在Debian系统下优化PyTorch的并行计算,可以从以下几个方面入手:
torch.nn.DataParallel
来自动分配数据到各个GPU。model = torch.nn.DataParallel(model)
torch.nn.parallel.DistributedDataParallel
。import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
dist.init_process_group(backend='nccl')
model = DDP(model)
class ModelParallelModel(nn.Module):
def __init__(self):
super(ModelParallelModel, self).__init__()
self.part1 = nn.Linear(1000, 1000).to('cuda:0')
self.part2 = nn.Linear(1000, 1000).to('cuda:1')
def forward(self, x):
x = x.to('cuda:0')
x = self.part1(x)
x = x.to('cuda:1')
x = self.part2(x)
return x
for i, (inputs, labels) in enumerate(data_loader):
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
if (i + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
torch.cuda.amp
进行混合精度训练,减少内存占用并加速计算。scaler = torch.cuda.amp.GradScaler()
for data, target in data_loader:
optimizer.zero_grad()
with torch.cuda.amp.autocast():
output = model(data)
loss = criterion(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
num_workers
参数增加数据加载的线程数。data_loader = DataLoader(dataset, batch_size=32, num_workers=4)
torch.utils.data.DataLoader
的prefetch_factor
参数来预取数据。net.core.somaxconn
和vm.swappiness
。torch.autograd.profiler
或nvprof
等工具进行性能分析,找出瓶颈。通过以上这些方法,你可以在Debian系统下有效地优化PyTorch的并行计算性能。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>