温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Spark存储Parquet数据到Hive时如何对map、array、struct字段类型进行处理

发布时间:2021-12-13 10:45:41 阅读:311 作者:小新 栏目:大数据
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

这篇文章给大家分享的是有关Spark存储Parquet数据到Hive时如何对map、array、struct字段类型进行处理的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

利用Spark往Hive中存储parquet数据,针对一些复杂数据类型如map、array、struct的处理遇到的问题?

为了更好的说明导致问题的原因、现象以及解决方案,首先看下述示例:

-- 创建存储格式为parquet的Hive非分区表CREATE EXTERNAL TABLE `t1`(`id` STRING,`map_col` MAP<STRING, STRING>,`arr_col` ARRAY<STRING>,`struct_col` STRUCT<A:STRING,B:STRING>)STORED AS PARQUETLOCATION '/home/spark/test/tmp/t1';-- 创建存储格式为parquet的Hive分区表CREATE EXTERNAL TABLE `t2`(`id` STRING,`map_col` MAP<STRING, STRING>,`arr_col` ARRAY<STRING>,`struct_col` STRUCT<A:STRING,B:STRING>)PARTITIONED BY (`dt` STRING)STORED AS PARQUETLOCATION '/home/spark/test/tmp/t2';
分别向t1、t2执行insert into(insert overwrite..select也会导致下列问题)语句,列map_col都存储为空map:

insert into table t1 values(1,map(),array('1,1,1'),named_struct('A','1','B','1'));

insert into table t2 partition(dt='20200101') 

values(1,map(),array('1,1,1'),named_struct('A','1','B','1'));

t1表正常执行,但对t2执行上述insert语句时,报如下异常:

Caused by: parquet.io.ParquetEncodingException: empty fields are illegal, the field should be ommited completely insteadat parquet.io.MessageColumnIO$MessageColumnIORecordConsumer.endField(MessageColumnIO.java:244)    at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter.writeMap(DataWritableWriter.java:241)    at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter.writeValue(DataWritableWriter.java:116)    at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter.writeGroupFields(DataWritableWriter.java:89)    at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter.write(DataWritableWriter.java:60)    ... 23 more

t1和t2从建表看唯一的区别就是t1不是分区表而t2是分区表,仅仅从报错信息是无法看出表分区产生这种问题的原因,看看源码是做了哪些不同的处理(这里为了方便,笔者这里直接给出分析这个问题的源码思路图):

Spark存储Parquet数据到Hive时如何对map、array、struct字段类型进行处理

t1底层存储指定的是ParquetFilemat,t2底层存储指定的是HiveFileFormat。这里主要分析一下存储空map到t2时,为什么出问题,以及如何处理,看几个核心的代码(具体的可以参考上述源码图):  

从抛出的异常信息empty fields are illegal,关键看empty fields在哪里抛出,做了哪些处理,这要看MessageColumnIO中startField和endField是做了哪些处理:

public void startField(String field, int index) {  try {  if (MessageColumnIO.DEBUG) {    this.log("startField(" + field + ", " + index + ")");  }  this.currentColumnIO = ((GroupColumnIO)this.currentColumnIO).getChild(index);  //MessageColumnIO中,startField方法中首先会将emptyField设置为true  this.emptyField = true;  if (MessageColumnIO.DEBUG) {      this.printState();  }  } catch (RuntimeException var4) { throw new ParquetEncodingException("error starting field " + field + " at " + index, var4);    }}//endField方法中会针对emptyField是否为true来决定是否抛出异常public void endField(String field, int index) {   if (MessageColumnIO.DEBUG) {       this.log("endField(" + field + ", " + index + ")");   }   this.currentColumnIO = this.currentColumnIO.getParent();   //如果到这里仍为true,则抛异常   if (this.emptyField) {       throw new ParquetEncodingException("empty fields are illegal, the field should be ommited completely instead");     } else {         this.fieldsWritten[this.currentLevel].markWritten(index);         this.r[this.currentLevel] = this.currentLevel == 0 ? 0 : this.r[this.currentLevel - 1];        if (MessageColumnIO.DEBUG) {            this.printState();        }    }}

针对map做处理的一些源码:

private void writeMap(final Object value, final MapObjectInspector inspector, final GroupType type) {    // Get the internal map structure (MAP_KEY_VALUE)    GroupType repeatedType = type.getType(0).asGroupType();    recordConsumer.startGroup();    recordConsumer.startField(repeatedType.getName(), 0);    Map<?, ?> mapValues = inspector.getMap(value);    Type keyType = repeatedType.getType(0);    String keyName = keyType.getName();    ObjectInspector keyInspector = inspector.getMapKeyObjectInspector();    Type valuetype = repeatedType.getType(1);    String valueName = valuetype.getName();    ObjectInspector valueInspector = inspector.getMapValueObjectInspector();    for (Map.Entry<?, ?> keyValue : mapValues.entrySet()) {      recordConsumer.startGroup();      if (keyValue != null) {        // write key element        Object keyElement = keyValue.getKey();        //recordConsumer此处对应的是MessageColumnIO中的MessageColumnIORecordConsumer        //查看其中的startField和endField的处理        recordConsumer.startField(keyName, 0);        //查看writeValue中对原始数据类型的处理,如int、boolean、varchar        writeValue(keyElement, keyInspector, keyType);        recordConsumer.endField(keyName, 0);        // write value element        Object valueElement = keyValue.getValue();        if (valueElement != null) {          //同上          recordConsumer.startField(valueName, 1);          writeValue(valueElement, valueInspector, valuetype);          recordConsumer.endField(valueName, 1);        }      }      recordConsumer.endGroup();    }    recordConsumer.endField(repeatedType.getName(), 0);    recordConsumer.endGroup();}private void writePrimitive(final Object value, final PrimitiveObjectInspector inspector) {  //value为null,则return  if (value == null) {    return;  }  switch (inspector.getPrimitiveCategory()) {    //PrimitiveCategory为VOID,则return    case VOID:      return;    case DOUBLE:      recordConsumer.addDouble(((DoubleObjectInspector) inspector).get(value));      break;    //下面是对double、boolean、float、byte、int等数据类型做的处理,这里不在贴出    ....
可以看到在startFiled中首先对emptyField设置为true,只有在结束时比如endField方法中将emptyField设置为false,才不会抛出上述异常。而存储字段类型为map时,有几种情况会导致这种异常的发生,比如map为空或者map的key为null。

这里只是以map为例,对于array、struct都有类似问题,看源码HiveFileFormat -> DataWritableWriter对这三者处理方式类似。类似的问题,在Hive的issue中https://issues.apache.org/jira/browse/HIVE-11625也有讨论。

分析出问题解决就比较简单了,以存储map类型字段为例:

1. 如果无法改变建表schema,或者存储时底层用的就是HiveFileFormat

如果无法确定存储的map字段是否为空,存储之前判断一下map是否为空,可以写个udf或者用size判断一下,同时要保证key不能为null
2.建表时使用Spark的DataSource表
-- 这种方式本质上还是用ParquetFileFormat,并且是内部表,生产中不建议直接使用这种方式CREATE TABLE `test`(`id` STRING,`map_col` MAP<STRING, STRING>,`arr_col` ARRAY<STRING>,`struct_col` STRUCT<A:STRING,B:STRING>)USING parquetOPTIONS(`serialization.format` '1');

3. 存储时指定ParquetFileFormat

比如,ds.write.format("parquet").save("/tmp/test")
其实像这类问题,相信很多人都遇到过并且解决了。这里是为了给出当遇到问题时,解决的一种思路。不仅要知道如何解决,更要知道发生问题是什么原因导致的、如何避免这种问题、解决了问题是怎么解决的(为什么这种方式能解决,有没有更优的方法)等。

感谢各位的阅读!关于“Spark存储Parquet数据到Hive时如何对map、array、struct字段类型进行处理”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

原文链接:https://my.oschina.net/bigdatalearnshare/blog/4836602

AI

开发者交流群×