使用Python怎么实现一个顺序高斯消元法?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
# coding: utf8
import numpy as np
# 设置矩阵
def getInput():
matrix_a = np.mat([[2, 3, 11, 5],
[1, 1, 5, 2],
[2, 1, 3, 2],
[1, 1, 3, 4]],dtype=float)
matrix_b = np.mat([2,1,-3,-3])
#答案:-2 0 1 1
return matrix_a, matrix_b
def SequentialGauss(mat_a):
for i in range(0, (mat_a.shape[0])-1):
if mat_a[i, i] == 0:
print("终断运算:")
print(mat_a)
break
else:
for j in range(i+1, mat_a.shape[0]):
mat_a[j:j+1 , :] = mat_a[j:j+1,:] - \
(mat_a[j,i]/mat_a[i,i])*mat_a[i, :]
return mat_a
def revert(new_mat):
#创建矩阵存放答案 初始化为0
x = np.mat(np.zeros(new_mat.shape[0], dtype=float))
number = x.shape[1]-1
# print(number)
b = number+1
x[0,number] = new_mat[number,b]/new_mat[number, number]
for i in range(number-1,-1,-1):
try:
x[0,i] = (new_mat[i,b]-np.sum(np.multiply(new_mat[i,i+1:b],x[0,i+1:b])))/(new_mat[i,i])
except:print("错误")
print(x)
if __name__ == "__main__":
mat_a, mat_b = getInput()
# 合并两个矩阵
print("原矩阵")
print(np.hstack((mat_a, mat_b.T)))
new_mat = SequentialGauss(np.hstack((mat_a, mat_b.T)))
print("三角矩阵")
print(new_mat)
print("方程的解")
revert(new_mat)
运行结果如下
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。