这篇文章给大家介绍利用python如何实现一个人脸识别功能,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
图片人脸识别
import cv2
filepath = "img/xingye-1.png"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色
# OpenCV人脸识别分类器
classifier = cv2.CascadeClassifier(
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
color = (0, 255, 0) # 定义绘制颜色
# 调用识别人脸
faceRects = classifier.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects): # 大于0则检测到人脸
for faceRect in faceRects: # 单独框出每一张人脸
x, y, w, h = faceRect
# 框出人脸
cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
# 左眼
cv2.circle(img, (x + w // 4, y + h // 4 + 30), min(w // 8, h // 8),
color)
#右眼
cv2.circle(img, (x + 3 * w // 4, y + h // 4 + 30), min(w // 8, h // 8),
color)
#嘴巴
cv2.rectangle(img, (x + 3 * w // 8, y + 3 * h // 4),
(x + 5 * w // 8, y + 7 * h // 8), color)
cv2.imshow("image", img) # 显示图像
c = cv2.waitKey(10)
cv2.waitKey(0)
cv2.destroyAllWindows()
视频人脸识别
# -*- coding:utf-8 -*-
# OpenCV版本的视频检测
import cv2
# 图片识别方法封装
def discern(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cap = cv2.CascadeClassifier(
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
faceRects = cap.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(50, 50))
if len(faceRects):
for faceRect in faceRects:
x, y, w, h = faceRect
cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸
cv2.imshow("Image", img)
# 获取摄像头0表示第一个摄像头
cap = cv2.VideoCapture(0)
while (1): # 逐帧显示
ret, img = cap.read()
# cv2.imshow("Image", img)
discern(img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release() # 释放摄像头
cv2.destroyAllWindows() # 释放窗口资源
关于利用python如何实现一个人脸识别功能就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。