温馨提示×

pytorch服务器怎样实现多任务调度

小樊
81
2024-12-26 23:43:06
栏目: 云计算

在PyTorch中,实现多任务调度通常涉及到使用torch.nn.DataParalleltorch.nn.parallel.DistributedDataParallel来并行化模型训练,以及使用torch.utils.data.DataLoader来管理数据加载。以下是一个简单的示例,展示了如何在PyTorch服务器上实现多任务调度:

  1. 定义多个任务模型: 首先,定义多个任务模型,每个模型负责一个特定的任务。

    import torch
    import torch.nn as nn
    
    class TaskModel1(nn.Module):
        def __init__(self):
            super(TaskModel1, self).__init__()
            self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
            self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
            self.fc1 = nn.Linear(64 * 6 * 6, 128)
            self.fc2 = nn.Linear(128, 10)
    
        def forward(self, x):
            x = F.relu(self.conv1(x))
            x = F.max_pool2d(x, 2)
            x = F.relu(self.conv2(x))
            x = F.max_pool2d(x, 2)
            x = x.view(-1, 64 * 6 * 6)
            x = F.relu(self.fc1(x))
            x = self.fc2(x)
            return x
    
    class TaskModel2(nn.Module):
        def __init__(self):
            super(TaskModel2, self).__init__()
            self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
            self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
            self.fc1 = nn.Linear(64 * 6 * 6, 128)
            self.fc2 = nn.Linear(128, 10)
    
        def forward(self, x):
            x = F.relu(self.conv1(x))
            x = F.max_pool2d(x, 2)
            x = F.relu(self.conv2(x))
            x = F.max_pool2d(x, 2)
            x = x.view(-1, 64 * 6 * 6)
            x = F.relu(self.fc1(x))
            x = self.fc2(x)
            return x
    
  2. 初始化模型: 初始化多个模型实例。

    model1 = TaskModel1()
    model2 = TaskModel2()
    
  3. 使用DataParallel进行并行化: 使用torch.nn.DataParallel将模型并行化到多个GPU上。

    if torch.cuda.device_count() > 1:
        print("Using", torch.cuda.device_count(), "GPUs")
        model1 = nn.DataParallel(model1)
        model2 = nn.DataParallel(model2)
    
    model1.cuda()
    model2.cuda()
    
  4. 定义数据加载器: 定义数据加载器来加载数据。

    from torchvision import datasets, transforms
    
    transform = transforms.Compose([transforms.ToTensor()])
    
    train_dataset1 = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
    train_loader1 = torch.utils.data.DataLoader(train_dataset1, batch_size=64, shuffle=True)
    
    train_dataset2 = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
    train_loader2 = torch.utils.data.DataLoader(train_dataset2, batch_size=64, shuffle=True)
    
  5. 训练模型: 在每个任务上训练模型。

    import torch.optim as optim
    
    criterion = nn.CrossEntropyLoss()
    optimizer1 = optim.SGD(model1.parameters(), lr=0.01)
    optimizer2 = optim.SGD(model2.parameters(), lr=0.01)
    
    for epoch in range(10):
        for data, target in train_loader1:
            data, target = data.cuda(), target.cuda()
            optimizer1.zero_grad()
            output = model1(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer1.step()
    
        for data, target in train_loader2:
            data, target = data.cuda(), target.cuda()
            optimizer2.zero_grad()
            output = model2(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer2.step()
    
        print(f'Epoch {epoch+1}, Loss Model 1: {loss.item()}, Loss Model 2: {loss.item()}')
    

在这个示例中,我们定义了两个任务模型TaskModel1TaskModel2,并使用torch.nn.DataParallel将它们并行化到多个GPU上。然后,我们使用两个不同的数据加载器分别加载数据,并在每个任务上进行训练。这样可以实现多任务调度,提高训练效率。

0