在PyTorch中,全连接神经网络的初始化可以通过以下几种方法:
nn.init.kaiming_uniform_
或nn.init.kaiming_normal_
函数进行初始化。import torch.nn as nn
def initialize_weights(m):
if isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight, nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
model = YourModel()
model.apply(initialize_weights)
nn.init.xavier_uniform_
或nn.init.xavier_normal_
函数进行初始化。import torch.nn as nn
def initialize_weights(m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
model = YourModel()
model.apply(initialize_weights)
nn.init.normal_
函数进行初始化。import torch.nn as nn
def initialize_weights(m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0, std=0.05)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
model = YourModel()
model.apply(initialize_weights)
nn.init.uniform_
函数进行初始化。import torch.nn as nn
def initialize_weights(m):
if isinstance(m, nn.Linear):
nn.init.uniform_(m.weight, -1, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
model = YourModel()
model.apply(initialize_weights)
在选择初始化方法时,可以考虑模型的深度、激活函数的类型以及数据的分布等因素。