在Linux环境下,C++多线程实现高效同步可以通过以下几种方式:
std::mutex
和std::lock_guard
来实现互斥锁。#include <iostream>
#include <mutex>
#include <thread>
std::mutex mtx;
void print_block(int n, char c) {
mtx.lock();
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
mtx.unlock();
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
std::shared_mutex
和std::shared_lock
来实现读写锁。#include <iostream>
#include <shared_mutex>
#include <thread>
std::shared_mutex rw_mtx;
void read_block(int n, char c) {
std::shared_lock<std::shared_mutex> lock(rw_mtx);
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
}
void write_block(int n, char c) {
std::unique_lock<std::shared_mutex> lock(rw_mtx);
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
}
int main() {
std::thread th1(read_block, 50, '*');
std::thread th2(write_block, 50, '$');
th1.join();
th2.join();
return 0;
}
std::atomic
模板类来实现原子操作。#include <iostream>
#include <atomic>
#include <thread>
std::atomic<int> counter(0);
void increment_counter() {
for (int i = 0; i < 100000; ++i) {
++counter;
}
}
int main() {
std::thread th1(increment_counter);
std::thread th2(increment_counter);
th1.join();
th2.join();
std::cout << "Counter: " << counter << '\n';
return 0;
}
std::condition_variable
来实现条件变量。#include <iostream>
#include <mutex>
#include <condition_variable>
#include <thread>
std::mutex mtx;
std::condition_variable cv;
bool ready = false;
void print_id(int id) {
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [] { return ready; });
std::cout << "Thread " << id << '\n';
}
void go() {
std::lock_guard<std::mutex> lock(mtx);
ready = true;
cv.notify_all();
}
int main() {
std::thread threads[10];
for (int i = 0; i < 10; ++i) {
threads[i] = std::thread(print_id, i);
}
std::this_thread::sleep_for(std::chrono::seconds(1));
go();
for (auto& th : threads) {
th.join();
}
return 0;
}
std::barrier
来实现屏障。#include <iostream>
#include <barrier>
#include <thread>
#include <vector>
std::barrier sync_point(3);
void do_work(int id) {
std::cout << "Thread " << id << " before sync_point\n";
sync_point.arrive_and_wait();
std::cout << "Thread " << id << " after sync_point\n";
}
int main() {
std::vector<std::thread> threads;
for (int i = 0; i < 3; ++i) {
threads.emplace_back(do_work, i);
}
for (auto& th : threads) {
th.join();
}
return 0;
}
根据实际需求选择合适的同步原语,以实现高效的多线程同步。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读:C++在Linux下如何实现多线程同步