PyTorch服务器处理数据并行的关键在于使用torch.nn.DataParallel
或torch.nn.parallel.DistributedDataParallel
。以下是两种方法的简要说明和示例:
torch.nn.DataParallel
:DataParallel
可以将模型和数据并行化,以便在多个GPU上训练。首先,确保你有多个GPU设备,然后按照以下步骤操作:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 定义一个简单的模型
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.fc = nn.Linear(784, 10)
def forward(self, x):
return self.fc(x)
# 创建模型实例
model = SimpleModel()
# 使用DataParallel包装模型
if torch.cuda.device_count() > 1:
print("Using", torch.cuda.device_count(), "GPUs")
model = nn.DataParallel(model)
# 将模型放到GPU上
model.cuda()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 数据预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
# 训练模型
for epoch in range(10):
for data, target in train_loader:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print("Epoch", epoch, "Loss:", loss.item())
torch.nn.parallel.DistributedDataParallel
:DistributedDataParallel
是DataParallel
的扩展,支持多节点分布式训练。首先,确保你的系统配置正确,然后按照以下步骤操作:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import torch.distributed as dist
import torch.multiprocessing as mp
def setup(rank, world_size):
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.fc = nn.Linear(784, 10)
def forward(self, x):
return self.fc(x)
def train(rank, world_size):
setup(rank, world_size)
model = SimpleModel()
if torch.cuda.device_count() > 1:
print("Using", torch.cuda.device_count(), "GPUs")
model = nn.DataParallel(model)
model.cuda(rank)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, num_replicas=world_size, rank=rank)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, sampler=train_sampler)
for epoch in range(10):
train_sampler.set_epoch(epoch)
for data, target in train_loader:
data, target = data.cuda(rank), target.cuda(rank)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print("Rank", rank, "Epoch", epoch, "Loss:", loss.item())
cleanup()
def main():
world_size = 4
mp.spawn(train, args=(world_size,), nprocs=world_size, join=True)
if __name__ == "__main__":
main()
这个示例使用了nccl
后端,但你也可以根据你的系统选择其他后端。注意,DistributedDataParallel
需要更多的设置和配置,但它提供了更好的性能和扩展性。