温馨提示×

pytorch怎么搭建神经网络

小亿
81
2024-12-31 05:18:13
栏目: 深度学习

在PyTorch中搭建神经网络通常涉及以下步骤:

  1. 导入必要的库

    import torch
    import torch.nn as nn
    import torch.optim as optim
    
  2. 定义网络结构: 你可以创建一个继承自nn.Module的类来定义你的网络结构。例如,一个简单的全连接神经网络可以如下定义:

    class SimpleNN(nn.Module):
        def __init__(self, input_size, hidden_size, output_size):
            super(SimpleNN, self).__init__()
            self.fc1 = nn.Linear(input_size, hidden_size)
            self.relu = nn.ReLU()
            self.fc2 = nn.Linear(hidden_size, output_size)
    
        def forward(self, x):
            out = self.fc1(x)
            out = self.relu(out)
            out = self.fc2(out)
            return out
    
  3. 初始化网络、损失函数和优化器

    input_size = 784  # 假设输入是一个28x28的图像
    hidden_size = 128
    output_size = 10  # 假设输出是10个类别的概率分布
    
    net = SimpleNN(input_size, hidden_size, output_size)
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=0.01)
    
  4. 准备数据集: 你需要将数据集加载到内存中,并进行必要的预处理。例如,对于图像数据,你可能需要将其展平为一维向量,并进行归一化。

    from torchvision import datasets, transforms
    
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
    
    train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
    
    test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
    
  5. 训练网络

    num_epochs = 10
    
    for epoch in range(num_epochs):
        for images, labels in train_loader:
            optimizer.zero_grad()
    
            outputs = net(images)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
    
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
    
  6. 测试网络

    correct = 0
    total = 0
    
    with torch.no_grad():
        for images, labels in test_loader:
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
    print(f'Accuracy of the network on the test images: {100 * correct / total:.2f}%')
    

以上就是在PyTorch中搭建和训练一个简单神经网络的步骤。你可以根据自己的需求调整网络结构、损失函数和优化器,以及数据预处理的方式。

0