在Linux环境下使用Python进行爬虫开发时,系统调优是一个重要的环节,可以提高爬虫的性能和效率。以下是一些常见的系统调优方法和技巧:
pip install pypy
pip install cython
threading
模块来并行处理请求。import threading
import requests
def fetch(url):
response = requests.get(url)
print(response.text)
threads = []
for i in range(10):
t = threading.Thread(target=fetch, args=('http://example.com',))
t.start()
threads.append(t)
for t in threads:
t.join()
multiprocessing
模块来并行处理请求,适合CPU密集型任务。import multiprocessing
import requests
def fetch(url):
response = requests.get(url)
print(response.text)
processes = []
for i in range(10):
p = multiprocessing.Process(target=fetch, args=('http://example.com',))
p.start()
processes.append(p)
for p in processes:
p.join()
asyncio
库进行异步编程,适合I/O密集型任务。import aiohttp
import asyncio
async def fetch(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.text()
async def main():
urls = ['http://example.com'] * 10
tasks = [fetch(url) for url in urls]
responses = await asyncio.gather(*tasks)
for response in responses:
print(response)
asyncio.run(main())
import requests
proxies = {
'http': 'http://proxy.example.com:8080',
'https': 'http://proxy.example.com:8080',
}
response = requests.get('http://example.com', proxies=proxies)
print(response.text)
import requests
headers = {
'Accept-Encoding': 'gzip, deflate',
}
response = requests.get('http://example.com', headers=headers)
print(response.text)
import mysql.connector
db = mysql.connector.connect(
host="localhost",
user="user",
password="password",
database="database"
)
cursor = db.cursor(pool_name="mypool", pool_size=5)
cursor.execute("SELECT * FROM table")
result = cursor.fetchall()
print(result)
import functools
@functools.lru_cache(maxsize=128)
def expensive_function(arg):
# 模拟耗时操作
return arg * 2
通过以上方法,可以有效地对Linux环境下的Python爬虫进行系统调优,提高爬虫的性能和效率。