Keras中的Dropout层用于在训练过程中随机丢弃部分神经元的输出,以防止过拟合。通过在每次训练迭代中丢弃一定比例的神经元,Dropout层可以减少网络的复杂度,提高模型的泛化能力。在测试阶段,Dropout层会将所有神经元的输出乘以保留概率,以保持输出的期望值不变。