在CentOS上,有几个推荐的PyTorch可视化工具,可以帮助您更好地理解和调试深度学习模型。以下是一些常用的工具及其使用方法:
pip install hiddenlayer
import hiddenlayer as h
import torch
class convnet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(1, 16, 3, 1, 1),
nn.ReLU(),
nn.AvgPool2d(2, 2)
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2, 2)
)
self.fc = nn.Sequential(
nn.Linear(32 * 7 * 7, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU()
)
self.out = nn.Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return self.out(x)
myconvnet = convnet()
hvis_graph = h.build_graph(myconvnet, torch.zeros([1, 1, 28, 28]))
vis_graph.theme = h.graph.themes["blue"].copy()
vis_graph.save("./demo1.png")
pip install torchviz
from torch import nn
from torchviz import make_dot
class simplecnn(nn.Module):
def __init__(self):
super(simplecnn, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.fc1 = nn.Linear(64 * 28 * 28, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = torch.relu(x)
x = torch.max_pool2d(x, 2, 2)
x = self.conv2(x)
x = torch.relu(x)
x = torch.max_pool2d(x, 2, 2)
x = self.conv3(x)
x = torch.relu(x)
x = torch.max_pool2d(x, 2, 2)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = torch.relu(x)
return self.fc2(x)
model = simplecnn()
input_shape = (1, 3, 224, 224)
img = visualtorch.layered_view(model, input_shape=input_shape, draw_volume=False)
plt.axis("off")
plt.tight_layout()
plt.imshow(img)
plt.show()
pip install tensorboardX
from tensorboardX import SummaryWriter
import torch
writer = SummaryWriter('runs/experiment-1')
model = ... # your model here
images, labels = ... # your data here
outputs = model(images)
loss = ... # compute loss
writer.add_graph(model, images)
writer.add_scalar('Loss/train', loss, epoch)
writer.close()
pip install netron
import netron
netron.show('path_to_your_model.pt')
这些工具可以帮助您更好地理解和调试PyTorch模型,选择合适的工具可以根据您的具体需求来决定。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>