温馨提示×

CentOS上PyTorch可视化工具推荐

小樊
46
2025-03-03 19:42:36
栏目: 智能运维
Centos服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在CentOS上,有几个推荐的PyTorch可视化工具,可以帮助您更好地理解和调试深度学习模型。以下是一些常用的工具及其使用方法:

hiddenlayer

  • 功能:用于可视化神经网络的结构。
  • 安装pip install hiddenlayer
  • 使用示例
    import hiddenlayer as h
    import torch
    
    class convnet(nn.Module):
        def __init__(self):
            super(ConvNet, self).__init__()
            self.conv1 = nn.Sequential(
                nn.Conv2d(1, 16, 3, 1, 1),
                nn.ReLU(),
                nn.AvgPool2d(2, 2)
            )
            self.conv2 = nn.Sequential(
                nn.Conv2d(16, 32, 3, 1, 1),
                nn.ReLU(),
                nn.MaxPool2d(2, 2)
            )
            self.fc = nn.Sequential(
                nn.Linear(32 * 7 * 7, 128),
                nn.ReLU(),
                nn.Linear(128, 64),
                nn.ReLU()
            )
            self.out = nn.Linear(64, 10)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            x = x.view(x.size(0), -1)
            x = self.fc(x)
            return self.out(x)
    
    myconvnet = convnet()
    hvis_graph = h.build_graph(myconvnet, torch.zeros([1, 1, 28, 28]))
    vis_graph.theme = h.graph.themes["blue"].copy()
    vis_graph.save("./demo1.png")
    

torchviz

  • 功能:用于可视化神经网络的结构和计算图。
  • 安装pip install torchviz
  • 使用示例
    from torch import nn
    from torchviz import make_dot
    
    class simplecnn(nn.Module):
        def __init__(self):
            super(simplecnn, self).__init__()
            self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
            self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
            self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
            self.fc1 = nn.Linear(64 * 28 * 28, 128)
            self.fc2 = nn.Linear(128, 10)
    
        def forward(self, x):
            x = self.conv1(x)
            x = torch.relu(x)
            x = torch.max_pool2d(x, 2, 2)
            x = self.conv2(x)
            x = torch.relu(x)
            x = torch.max_pool2d(x, 2, 2)
            x = self.conv3(x)
            x = torch.relu(x)
            x = torch.max_pool2d(x, 2, 2)
            x = x.view(x.size(0), -1)
            x = self.fc1(x)
            x = torch.relu(x)
            return self.fc2(x)
    
    model = simplecnn()
    input_shape = (1, 3, 224, 224)
    img = visualtorch.layered_view(model, input_shape=input_shape, draw_volume=False)
    plt.axis("off")
    plt.tight_layout()
    plt.imshow(img)
    plt.show()
    

TensorBoardX

  • 功能:用于可视化PyTorch模型的指标和图。
  • 安装pip install tensorboardX
  • 使用示例
    from tensorboardX import SummaryWriter
    import torch
    
    writer = SummaryWriter('runs/experiment-1')
    model = ...  # your model here
    images, labels = ...  # your data here
    outputs = model(images)
    loss = ...  # compute loss
    
    writer.add_graph(model, images)
    writer.add_scalar('Loss/train', loss, epoch)
    writer.close()
    

Netron

  • 功能:用于查看和可视化PyTorch模型。
  • 安装pip install netron
  • 使用示例
    import netron
    netron.show('path_to_your_model.pt')
    

这些工具可以帮助您更好地理解和调试PyTorch模型,选择合适的工具可以根据您的具体需求来决定。

亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读:PyTorch在CentOS上的可视化工具有哪些

0