在 Spring Boot 中整合 Kafka 相对简单,只需要几个步骤即可完成。以下是详细的配置步骤:
首先,在你的 pom.xml
文件中添加 Spring Boot 和 Kafka 的依赖:
<dependencies>
<!-- Spring Boot Starter Web -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- Spring Boot Starter Kafka -->
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
</dependencies>
在 application.properties
或 application.yml
文件中配置 Kafka 的相关参数:
spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.consumer.group-id=my-group
spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
spring:
kafka:
bootstrap-servers: localhost:9092
consumer:
group-id: my-group
auto-offset-reset: earliest
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
producer:
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
创建一个配置类来定义 Kafka 的相关配置:
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.KafkaListenerConfigurer;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerEndpointRegistrar;
import org.springframework.kafka.config.KafkaListenerEndpointRegistry;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import java.util.HashMap;
import java.util.Map;
@Configuration
public class KafkaConfig implements KafkaListenerConfigurer {
@Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, "my-group");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
return props;
}
@Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return props;
}
@Bean
public ConsumerFactory<String, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());
}
@Bean
public ProducerFactory<String, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());
}
@Bean
public KafkaTemplate<String, String> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());
}
@Bean
public ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
return factory;
}
@Override
public void configureKafkaListeners(KafkaListenerEndpointRegistrar registrar) {
registrar.setKafkaListenerEndpointRegistrar(new KafkaListenerEndpointRegistrar() {
@Override
public void registerEndpoints(KafkaListenerEndpointRegistry registry) {
registry.register(kafkaListenerEndpoint());
}
});
}
@Bean
public KafkaListenerEndpoint<String, String> kafkaListenerEndpoint() {
KafkaListenerEndpoint<String, String> endpoint = new KafkaListenerEndpoint<>();
endpoint.setId("my-endpoint");
endpoint.setTopics("my-topic");
endpoint.setMessageHandlerMethodFactory(kafkaListenerEndpointMethodFactory());
return endpoint;
}
@Bean
public KafkaListenerEndpointMethodFactory<String, String> kafkaListenerEndpointMethodFactory() {
return new KafkaListenerEndpointMethodFactory<>();
}
}
创建一个消费者和生产者类来处理消息:
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Service;
@Service
public class KafkaConsumer {
@KafkaListener(topics = "my-topic", groupId = "my-group")
public void listen(String message) {
System.out.println("Received message: " + message);
}
}
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
@Service
public class KafkaProducer {
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
public void sendMessage(String topic, String message) {
kafkaTemplate.send(topic, message);
}
}
创建一个启动类来启动 Spring Boot 应用:
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class KafkaApplication {
public static void main(String[] args) {
SpringApplication.run(KafkaApplication.class, args);
}
}
启动应用后,你可以使用 Kafka 工具(如 kafka-console-producer.sh
和 kafka-console-consumer.sh
)来测试消息的生产和消费。
以上步骤涵盖了在 Spring Boot 中整合 Kafka 的基本配置。你可以根据具体需求进一步扩展和优化这些配置。