温馨提示×

linux c++多线程如何管理资源

c++
小樊
81
2024-12-04 00:08:48
栏目: 编程语言

在Linux环境下使用C++进行多线程编程时,资源管理是一个重要的考虑因素。以下是一些关键的管理策略和实践:

1. 使用互斥锁(Mutex)

互斥锁是保护共享资源的基本工具。通过std::mutexstd::lock_guardstd::unique_lock,可以确保同一时间只有一个线程访问共享资源。

#include <iostream>
#include <thread>
#include <mutex>

std::mutex mtx;
int shared_resource = 0;

void thread_func() {
    std::lock_guard<std::mutex> lock(mtx);
    shared_resource++;
    std::cout << "Shared resource: " << shared_resource << std::endl;
}

int main() {
    std::thread t1(thread_func);
    std::thread t2(thread_func);

    t1.join();
    t2.join();

    return 0;
}

2. 使用条件变量(Condition Variable)

条件变量用于线程间的同步,允许线程等待某个条件成立。

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>

std::mutex mtx;
std::condition_variable cv;
int shared_resource = 0;
bool ready = false;

void thread_func() {
    std::unique_lock<std::mutex> lock(mtx);
    cv.wait(lock, []{ return ready; });
    shared_resource++;
    std::cout << "Shared resource: " << shared_resource << std::endl;
}

int main() {
    std::thread t1(thread_func);
    std::thread t2(thread_func);

    {
        std::lock_guard<std::mutex> lock(mtx);
        ready = true;
    }
    cv.notify_all();

    t1.join();
    t2.join();

    return 0;
}

3. 使用原子操作(Atomic Operations)

原子操作是不可中断的操作,适用于简单的计数器等场景。

#include <iostream>
#include <thread>
#include <atomic>

std::atomic<int> shared_resource(0);

void thread_func() {
    shared_resource++;
    std::cout << "Shared resource: " << shared_resource.load() << std::endl;
}

int main() {
    std::thread t1(thread_func);
    std::thread t2(thread_func);

    t1.join();
    t2.join();

    return 0;
}

4. 使用RAII(Resource Acquisition Is Initialization)

RAII是一种C++编程技巧,通过对象的构造和析构来管理资源。在多线程环境中,可以使用std::lock_guardstd::unique_lock来自动管理互斥锁的生命周期。

5. 避免死锁

死锁是多线程编程中的常见问题。确保在获取多个锁时遵循一致的顺序,并使用超时机制来避免无限等待。

#include <iostream>
#include <thread>
#include <mutex>

std::mutex mtx1, mtx2;

void thread_func1() {
    std::unique_lock<std::mutex> lock(mtx1);
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    std::unique_lock<std::mutex> lock2(mtx2);
    // Do something
}

void thread_func2() {
    std::unique_lock<std::mutex> lock(mtx2);
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    std::unique_lock<std::mutex> lock1(mtx1);
    // Do something
}

int main() {
    std::thread t1(thread_func1);
    std::thread t2(thread_func2);

    t1.join();
    t2.join();

    return 0;
}

6. 使用线程池

线程池可以有效地管理线程资源,避免频繁创建和销毁线程的开销。

#include <iostream>
#include <thread>
#include <vector>
#include <queue>
#include <functional>
#include <mutex>
#include <condition_variable>

class ThreadPool {
public:
    ThreadPool(size_t num_threads) {
        for (size_t i = 0; i < num_threads; ++i) {
            workers.emplace_back([this] {
                while (true) {
                    std::function<void()> task;
                    {
                        std::unique_lock<std::mutex> lock(queue_mutex);
                        condition.wait(lock, [this] { return stop || !tasks.empty(); });
                        if (stop && tasks.empty()) {
                            return;
                        }
                        task = std::move(tasks.front());
                        tasks.pop();
                    }
                    task();
                }
            });
        }
    }

    ~ThreadPool() {
        {
            std::unique_lock<std::mutex> lock(queue_mutex);
            stop = true;
        }
        condition.notify_all();
        for (std::thread& worker : workers) {
            worker.join();
        }
    }

    template<class F, class... Args>
    void enqueue(F&& f, Args&&... args) {
        {
            std::unique_lock<std::mutex> lock(queue_mutex);
            tasks.emplace([f, args...] { f(args...); });
        }
        condition.notify_one();
    }

private:
    std::vector<std::thread> workers;
    std::queue<std::function<void()>> tasks;
    std::mutex queue_mutex;
    std::condition_variable condition;
    bool stop = false;
};

void thread_func(int id) {
    std::cout << "Thread " << id << " is running" << std::endl;
}

int main() {
    ThreadPool pool(4);
    for (int i = 0; i < 8; ++i) {
        pool.enqueue(thread_func, i);
    }

    return 0;
}

通过以上策略和实践,可以有效地管理Linux环境下C++多线程程序中的资源。

0