温馨提示×

python多线程爬虫 如何处理异常

小樊
89
2024-11-29 19:40:01
栏目: 编程语言

在Python多线程爬虫中处理异常,可以采用以下方法:

  1. 使用try-except语句:在爬虫的每个线程中,使用try-except语句来捕获可能发生的异常。这样,当异常发生时,程序不会崩溃,而是执行except块中的代码。
import threading
import requests
from bs4 import BeautifulSoup

def crawl(url):
    try:
        response = requests.get(url)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        # 爬虫逻辑
    except requests.exceptions.RequestException as e:
        print(f"请求异常:{e}")
    except Exception as e:
        print(f"其他异常:{e}")

# 创建线程
threads = []
for i in range(10):
    t = threading.Thread(target=crawl, args=("https://example.com",))
    t.start()
    threads.append(t)

# 等待所有线程完成
for t in threads:
    t.join()
  1. 使用logging模块:使用logging模块记录异常信息,而不是直接打印到控制台。这样可以更好地控制日志输出,便于分析和调试。
import logging
import threading
import requests
from bs4 import BeautifulSoup

logging.basicConfig(level=logging.ERROR, format='%(asctime)s - %(levelname)s - %(message)s')

def crawl(url):
    try:
        response = requests.get(url)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        # 爬虫逻辑
    except requests.exceptions.RequestException as e:
        logging.error(f"请求异常:{e}")
    except Exception as e:
        logging.error(f"其他异常:{e}")

# 创建线程
threads = []
for i in range(10):
    t = threading.Thread(target=crawl, args=("https://example.com",))
    t.start()
    threads.append(t)

# 等待所有线程完成
for t in threads:
    t.join()
  1. 使用concurrent.futures.ThreadPoolExecutor:这个类提供了更高级的线程池管理功能,可以更方便地处理线程异常。
import concurrent.futures
import requests
from bs4 import BeautifulSoup

def crawl(url):
    try:
        response = requests.get(url)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        # 爬虫逻辑
    except requests.exceptions.RequestException as e:
        print(f"请求异常:{e}")
        return None
    except Exception as e:
        print(f"其他异常:{e}")
        return None

urls = ["https://example.com"] * 10

with concurrent.futures.ThreadPoolExecutor() as executor:
    results = executor.map(crawl, urls)

for result in results:
    if result is not None:
        # 处理结果

这些方法可以帮助你在Python多线程爬虫中处理异常,确保程序的稳定运行。

0