温馨提示×

如何调整PyTorch中的学习率

小樊
202
2024-03-05 18:51:59
栏目: 编程语言
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在PyTorch中,可以通过以下几种方式来调整学习率:

  1. 使用torch.optim.lr_scheduler模块中的学习率调度器来自动调整学习率。可以选择不同的学习率调度策略,如StepLR、ReduceLROnPlateau、CosineAnnealingLR等。在每个epoch或batch结束时,调用学习率调度器的step方法即可更新学习率。
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR

optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)

for epoch in range(num_epochs):
    # Train the model
    ...
    
    # Update learning rate
    scheduler.step()
  1. 手动设置学习率。可以在训练过程中根据需要手动调整学习率,例如在特定的epoch或条件下改变学习率。
optimizer = optim.SGD(model.parameters(), lr=0.1)

for epoch in range(num_epochs):
    # Train the model
    ...
    
    if epoch == 30:
        for param_group in optimizer.param_groups:
            param_group['lr'] = 0.01
  1. 使用torch.optim模块中的optimizer.param_groups来调整学习率。通过修改optimizer.param_groups中的lr参数来更新学习率。
optimizer = optim.SGD(model.parameters(), lr=0.1)

for epoch in range(num_epochs):
    # Train the model
    ...
    
    if epoch % 10 == 0:
        for param_group in optimizer.param_groups:
            param_group['lr'] *= 0.1

以上是几种常见的调整学习率的方法,在训练神经网络时可以根据实际情况选择合适的方式调整学习率。

亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读:pytorch调参学习率咋调整呢

0