温馨提示×

DeepLearning4j分布式训练怎么实现

小亿
110
2024-03-25 13:51:51
栏目: 深度学习

DeepLearning4j可以通过使用Apache Spark或者Hadoop来实现分布式训练。下面是使用Apache Spark来实现分布式训练的步骤:

  1. 在pom.xml文件中添加以下依赖:
<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>deeplearning4j-core</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>deeplearning4j-ui_2.10</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>deeplearning4j-scaleout</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.nd4j</groupId>
    <artifactId>nd4j-native</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.nd4j</groupId>
    <artifactId>nd4j-cuda-9.2-platform</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.datavec</groupId>
    <artifactId>datavec-api</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.datavec</groupId>
    <artifactId>datavec-local</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.datavec</groupId>
    <artifactId>datavec-spark_2.10</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
  1. 创建一个SparkConf对象和JavaSparkContext对象:
SparkConf conf = new SparkConf();
conf.setAppName("DL4J Spark");
JavaSparkContext sc = new JavaSparkContext(conf);
  1. 加载数据集并创建一个DataSet对象:
JavaRDD<String> data = sc.textFile("hdfs://path/to/data.txt");
JavaRDD<DataSet> dataSet = data.map(new StringToDataSet());
  1. 创建一个MultiLayerConfiguration对象并设置神经网络的配置:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
    .seed(12345)
    .weightInit(WeightInit.XAVIER)
    .updater(new Adam(0.01))
    .list()
    .layer(0, new DenseLayer.Builder().nIn(784).nOut(250)
        .activation(Activation.RELU)
        .build())
    .layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
        .activation(Activation.SOFTMAX)
        .nIn(250).nOut(10).build())
    .build();
  1. 创建一个ComputationGraph对象并使用SparkComputationGraph对象进行训练:
ComputationGraph model = new ComputationGraph(conf);
model.init();
SparkComputationGraph sparkNet = new SparkComputationGraph(sc, model);
sparkNet.fit(dataSet);

通过以上步骤,就可以使用DeepLearning4j和Apache Spark实现分布式训练。同样的,如果要使用Hadoop来实现分布式训练,可以使用datavec-hadoop依赖来读取HDFS中的数据集,并使用SparkComputationGraph对象进行训练。

0