在Torch中处理缺失数据的方法有多种,以下是一些常用的方法:
data = torch.tensor([1, 2, float('nan'), 4, float('nan')])
mask = torch.isnan(data)
filtered_data = torch.masked_select(data, ~mask)
print(filtered_data)
data = torch.tensor([1, 2, float('nan'), 4, float('nan')])
mask = torch.isnan(data)
filled_data = torch.where(mask, torch.tensor(0), data)
print(filled_data)
data = torch.tensor([1, 2, float('nan'), 4, float('nan')])
mask = torch.isnan(data)
indices = torch.arange(len(data))
interpolated_data = torch.interp(indices, indices[~mask], data[~mask])
print(interpolated_data)
这些方法可以根据具体的情况选择合适的方式处理缺失数据。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读:Torch中怎么处理缺失值