在PyTorch中,可以使用以下两种方法来可视化网络结构:
from torchviz import make_dot
import torch
# 定义网络
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 20, 5)
self.conv2 = torch.nn.Conv2d(20, 50, 5)
self.fc1 = torch.nn.Linear(4*4*50, 500)
self.fc2 = torch.nn.Linear(500, 10)
def forward(self, x):
x = torch.nn.functional.relu(self.conv1(x))
x = torch.nn.functional.max_pool2d(x, 2, 2)
x = torch.nn.functional.relu(self.conv2(x))
x = torch.nn.functional.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = torch.nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 创建一个网络实例
net = Net()
# 创建一个随机输入
x = torch.randn(1, 1, 28, 28)
# 可视化网络结构
make_dot(net(x), params=dict(net.named_parameters()))
from torch.utils.tensorboard import SummaryWriter
import torch
# 定义网络
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 20, 5)
self.conv2 = torch.nn.Conv2d(20, 50, 5)
self.fc1 = torch.nn.Linear(4*4*50, 500)
self.fc2 = torch.nn.Linear(500, 10)
def forward(self, x):
x = torch.nn.functional.relu(self.conv1(x))
x = torch.nn.functional.max_pool2d(x, 2, 2)
x = torch.nn.functional.relu(self.conv2(x))
x = torch.nn.functional.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = torch.nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 创建一个网络实例
net = Net()
# 创建一个随机输入
x = torch.randn(1, 1, 28, 28)
# 创建一个TensorBoardX写入器
writer = SummaryWriter()
# 记录网络结构和参数
writer.add_graph(net, x)
# 关闭写入器
writer.close()
这两种方法都可以帮助您可视化PyTorch网络的结构,选择其中一种方法根据您的需求和偏好进行使用。