温馨提示×

Keras中怎么定义一个简单的神经网络模型

小亿
87
2024-03-29 15:57:11
栏目: 深度学习
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在Keras中,你可以通过Sequential模型来定义一个简单的神经网络模型。以下是一个简单的例子:

from keras.models import Sequential
from keras.layers import Dense

# 定义一个Sequential模型
model = Sequential()

# 添加输入层和隐藏层
model.add(Dense(units=64, activation='relu', input_dim=100))

# 添加输出层
model.add(Dense(units=10, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

# 查看模型结构
model.summary()

在这个例子中,我们首先创建了一个Sequential模型,然后添加了一个具有64个神经元和ReLU激活函数的隐藏层,以及一个具有10个神经元和softmax激活函数的输出层。接着我们编译模型,指定了损失函数、优化器和评估指标。最后使用model.summary()查看模型的结构。

亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读:Keras怎么创建一个简单的神经网络模型

0