温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Trie Tree(字典树)服务(已开源)

发布时间:2020-09-13 21:42:40 来源:网络 阅读:1762 作者:瞿杰 栏目:编程语言

作者:Tony Qu

前言:在数据挖掘领域,.NET基本上是空白,除了分词程序外,啥都没有,大量的招聘显示数据挖掘目前是Java, C++和Python的天下。作为微软阵营的一份子,我始终认为我们不该坐以待毙,与其坐着被人看笑话,还不如勇敢的站出来,创造一个崭新的.NET未来。(话说昨天的吐槽贴不知道大家玩的尽兴不尽兴,不是有人让我给点实战的玩意来证明.NET的牛X嘛,没问题啊,我如约而至。)

 

Trie Tree(字典树)对很多人显得有些陌生,用一句话来概括,它可以有效加速字符串匹配速度,并且应用极其广泛,如分词、搜索、脏字过滤等。曾经写过一篇介绍TrieTree的文章,不熟悉的同学可以看一下《Trie Tree介绍及其C#实现》。

TrieTree之所以快速,和它树形存储结构很有关系,由于所有的查找都是走结点的,所以速度会比普通字符串匹配快很多,传统匹配的问题在于即使匹配不成功,每次还是要去匹配前面这些字符,而且要与每一个字典项去匹配。

举个简单的例子,假设字典里面有两句整句,如“这里是我们的地盘”,“这里是你们的”,假设我现在要匹配
“这里是他们的”,传统存储会把字典保存在List<string>中,但这就意味着,“这里是”三个字每次都要匹配一遍,即使最终结果是没找到“这里是他们的”。但如果是TrieTree结构,我们只需要匹配一次“这里是”就能知道存不存在,随着字典中词数的增加,这种性能提升愈加明显。

这么好的东西怎么能没有一个通用的框架,于是我便考虑设计了TrieTree Service。TrieTree Service是一个基于Windows Service的服务,采用socket与客户端进行通讯,通讯部分使用了江大鱼的SuperSocket。(这玩意确实好用,上手也很快,我大概用了2天就把通讯部分全搞定了。)之所以采用Windows Service,主要考虑了分布式部署、以及内存空间的需求。由于TrieTree Service采用内存作为缓存空间,所以对内存是有很大需求的,如果与其他应用共享空间,在32位系统上估计很快就3GB了,根本没法用,但做成Windows Service以后,3GB至少是独享的。而且理论上我可以部署n个service,加载不同的字典,比如Service 1我加载盘古分词词典、Service 2我加载MongoDB的字典,以此类推,客户端会根据需要去访问不同的Service,从而获得足够的数据支持。

Trie Tree(字典树)服务(已开源)

Trie Tree服务还有一个很明显的优势那就是字典资源的整合,以往如果我们要调用第三方字典库或者扩展字典库,可能必须重新写一个类来实现读,然后调用不同的接口来加载不同的字典库,现在有了Trie Tree服务,你就可以做到把几个库合并在一起,比如盘古分词的库可以和细胞词库混用,如果词重复,Trie Tree服务不会重复添加,而是在现有结点上把频率相加。例如,我本地的TrieTree服务就把盘古分词、IKAnalyzer词典、还有我自己的多个MongoDB的字典库一起加载起来运行,那效果绝对是只可意会不可言传啊,哈哈。我看了下,内存占用也不高,只有400M左右。

Trie Tree服务支持POS (Part of Speech)枚举,说通俗点就是某个词的词性,如名词、动词、代词等。目前的POSType采用了盘古分词的类型,以后会考虑扩充,目前足够了。(话说清华和北大都有一套自己的POS分类,比盘古要详细,以后会考虑支持这两个标准,因为POS的细粒度决定了最终的分词结果。)

[Flags]
public enum POSType : int
{
    /// <summary>
    /// 形容词 形语素
    /// </summary>
    D_A = 0x40000000,    
    /// <summary>
    /// 区别词 区别语素
    /// </summary>
    D_B = 0x20000000,    
    /// <summary>
    /// 连词 连语素
    /// </summary>
    D_C = 0x10000000,    
    /// <summary>
    /// 副词 副语素
    /// </summary>
    D_D = 0x08000000,    
    /// <summary>
    /// 叹词 叹语素
    /// </summary>
    D_E = 0x04000000,    
    /// <summary>
    /// 方位词 方位语素
    /// </summary>
    D_F = 0x02000000,    
    /// <summary>
    /// 成语
    /// </summary>
    D_I = 0x01000000,    
    /// <summary>
    /// 习语
    /// </summary>
    D_L = 0x00800000,    
    /// <summary>
    /// 数词 数语素
    /// </summary>
    A_M = 0x00400000,    
    /// <summary>
    /// 数量词
    /// </summary>
    D_MQ = 0x00200000,    
    /// <summary>
    /// 名词 名语素
    /// </summary>
    D_N = 0x00100000,    
    /// <summary>
    /// 拟声词
    /// </summary>
    D_O = 0x00080000,    
    /// <summary>
    /// 介词
    /// </summary>
    D_P = 0x00040000,    
    /// <summary>
    /// 量词 量语素
    /// </summary>
    A_Q = 0x00020000,    
    /// <summary>
    /// 代词 代语素
    /// </summary>
    D_R = 0x00010000,    
    /// <summary>
    /// 处所词
    /// </summary>
    D_S = 0x00008000,    
    /// <summary>
    /// 时间词
    /// </summary>
    D_T = 0x00004000,    
    /// <summary>
    /// 助词 助语素
    /// </summary>
    D_U = 0x00002000,    
    /// <summary>
    /// 动词 动语素
    /// </summary>
    D_V = 0x00001000,    
    /// <summary>
    /// 标点符号
    /// </summary>
    D_W = 0x00000800,    
    /// <summary>
    /// 非语素字
    /// </summary>
    D_X = 0x00000400,
    /// <summary>
    /// 语气词 语气语素
    /// </summary>
    D_Y = 0x00000200,    
    /// <summary>
    /// 状态词
    /// </summary>
    D_Z = 0x00000100,    
    /// <summary>
    /// 人名
    /// </summary>
    A_NR = 0x00000080,    
    /// <summary>
    /// 地名
    /// </summary>
    A_NS = 0x00000040,    
    /// <summary>
    /// 机构团体
    /// </summary>
    A_NT = 0x00000020,    
    /// <summary>
    /// 外文字符
    /// </summary>
    A_NX = 0x00000010,    
    /// <summary>
    /// 其他专名
    /// </summary>
    [Description("其他专名")]
    A_NZ = 0x00000008,    
    /// <summary>
    /// 前接成分
    /// </summary>
    D_H = 0x00000004,    
    /// <summary>
    /// 后接成分
    /// </summary>
    D_K = 0x00000002,    
    /// <summary>
    /// 未知词性
    /// </summary>
    UNKNOWN = 0x00000000,   
}

同时TrieTree还支持POS并集查询,如D_N|D_V,表示查词性是名词或者动词的词。、

目前TrieTree支持三种匹配命令,它们是MMFetch(Maximum Match,正向最大匹配)、 RMMFetch(Reverse Maximum Match, 反向最大匹配)、 ExactMatch(全字匹配)。

例如你要使用MMFetch命令搜索“我们”,直接通过socket向TrieTree Service发送“MMFetch 我们”即可。如果你想搜索词性,可以发送“MMFetch 我们<SOH>512”,这表示搜索词性为语气词D_Y(0x200=512)的“我们”,其中<SOH>是一个自定义字符0x01,用作分隔符。其他两个命令的用法类似。

由于定义了IDataProvider接口,你可以根据需要定制自己的DataProvider。目前TrieTree Service自带了PanguDictProvider, TxtDictProvider, IKAnaylzerDictProvider。以下是IDataProvider的定义

public interface IDataNode
{
    /// <summary>
    /// word text
    /// </summary>
    string Word 
    { 
        get; set; 
    }
    /// <summary>
    /// Part of Speech Tag Value
    /// </summary>
    POSType POS 
    { 
        get; set; 
    }
    /// <summary>
    /// frequency of the word
    /// </summary>
    double Frequency
    { 
        get; set; 
    }
}

public interface IDataProvider
{
    List<IDataNode> Load();
}

这里的IDataNode代表导入的一条条词条,当然你必须先实现这个接口。其中的POS是之前提到的词性,Frequency是频率,Word是词本身。对于没有词性和没有频率的导入项,直接忽略这两项就行了。

在BluePrint.Dictionary命名空间下面定义了一个客户端封装类DictionaryServiceClient,提供了对命令的基本封装,这样你就不用直接去和SendCommand打交道了。

public TrieTreeResult ExactMatch(string word){...}
public TrieTreeResult MaximumMatch(string word){...}
public TrieTreeResult ReverseMaximumMatch(string word){...}

 

下载地址:https://github.com/tonyqus/TrieTreeService

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI