温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

优化Python程序的方法

发布时间:2020-08-24 17:08:11 来源:亿速云 阅读:156 作者:小新 栏目:编程语言

这篇文章主要介绍优化Python程序的方法,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

这次就说一种简单的方式来加速python计算速度的方法,就是使用numba库来进行,numba库可以使用JIT技术即时编译,达到高性能,另外也可以使用cuda GPU的计算能力来加速,对python来说是一个提速非常好的工具库,使用简单,但是安装稍微复杂一些。

优化Python程序的方法

安装完成numba就可以使用了。

下面写一个小案例来看一下加速后的程序和加速前的程序的区别,借用官网上最经典的例子:

#!/usr/bin/env python
# coding=utf-8
from numba import jit
from numpy import arange
import time

@jit
def sum2d(arr):
    M, N = arr.shape
    result = 0.0
    for i in range(M):
        for j in range(N):
            result += arr[i,j]
    return result

a = arange(9).reshape(3,3)
start_time = time.time()
for i in range(10000000):
    sum2d(a)
end_time = time.time()
print (end_time - start_time)

这里使用numpy生成三行三列的矩阵,[[0,1,2],[3,4,5],[6,7,8]]然后做二维累加计算,值显然应该是36,这里做了10000000次这样的计算,使用@jit注解可以直接的使用numba jit技术实时编译,从而提高速度,最终运行时间大约是3.86s,如果去掉注解的话那么运行时间大约是25.45s从这里可以看出来大约有6.6倍的性能提升,所以使用numba加速python程序确实是方便简单

以上是优化Python程序的方法的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI