小编这次要给大家分享的是Python如何过滤掉numpy.array中非nan数据,文章内容丰富,感兴趣的小伙伴可以来了解一下,希望大家阅读完这篇文章之后能够有所收获。
代码
需要先导入pandas
arr的数据类型为一维的np.array
import pandas as pd
arr[~pd.isnull(arr)]
补充知识:python numpy.mean() axis参数使用方法【sum(axis=*)是求和,mean(axis=*)是求平均值】
如下所示:
import numpy as np X = np.array([[1, 2], [4, 5], [7, 8]]) print(np.mean(X, axis=0, keepdims=True)) print('*'*50) print(np.mean(X, axis=1, keepdims=True)) print('*'*50) print(X.mean(axis=0)) print('*'*50) print(X.mean(axis=1))
[[4. 5.]]
[[1.5]
[4.5]
[7.5]]
[4. 5.]
[1.5 4.5 7.5]
20200221
np.mean()还可计算列表元素均值:
import numpy as np list1=[1,2,3,4,5] list2=[[1,2,3],[4,5,6]] print(np.mean(list1)) print(np.mean(list2))
结果:
3.0
3.5
看完这篇关于Python如何过滤掉numpy.array中非nan数据的文章,如果觉得文章内容写得不错的话,可以把它分享出去给更多人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。