这篇文章主要为大家展示了Python并发请求下如何实现限制QPS,内容简而易懂,希望大家可以学习一下,学习完之后肯定会有收获的,下面让小编带大家一起来看看吧。
前两天有一个需求,需要访问某API服务器请求数据,该服务器限制了QPS=2,因为QPS很小所以就使用阻塞式请求。后来开通了服务,QPS提高到了20,阻塞式请求满足不了这个QPS了,于是使用了GRequests来并发请求数据,但这里又遇到了一个问题:并发太快,服务器通过发送错误码拒绝了很多数据的响应,造成了资源的浪费。
故在此记录以下几种 节流(Throttle) 方法:
以下均假设有如下包和数据前提:
import grequests urls = [ "https://www.baidu.com", "https://www.google.com" ] requests = [ grequests.get(url) for url in urls ] * 1000 rate = 20 # 表示 20 请求/秒
time.sleep(1)
这是最简单的方法,通过time.sleep(1)阻塞进程来控制每秒并发数量。用公式表达如下:Time=请求准备时延+请求发送时延+time.sleep(1)Time = 请求准备时延 + 请求发送时延 + time.sleep(1)Time=请求准备时延+请求发送时延+time.sleep(1) 但是这种方法有一个较小的问题:不精确 。数据量越大,方差越大。
from time import sleep req_groups = [ requests[i: i+rate] for i in range(0, len(requests), rate) ] ret = [] for req_group in req_groups: ret += grequests.map(req_group) sleep(1) print(ret)
令牌桶(token bucket)方法
这种方法较精确,可以确保误差不超过±1(当然前提是你的电脑和目标服务器都能承受的了高并发)。以下是耗时的公式表示:Time=请求准备时延+请求发送时延+令牌桶阻塞时延Time = 请求准备时延 + 请求发送时延 + 令牌桶阻塞时延Time=请求准备时延+请求发送时延+令牌桶阻塞时延令牌桶阻塞时延≈1−请求准备时延+请求发送时延令牌桶阻塞时延 ≈ 1 - 请求准备时延 + 请求发送时延令牌桶阻塞时延请求准备时延+请求发送时延 这种方法当然也有一点缺陷,CPU看起来会很高(这是由于 while pass),尽管CPU真实使用率很低。
from time import time class Throttle: def __init__(self, rate): self.rate = rate self.tokens = 0 self.last = 0 def consume(self, amount=1): now = time() if self.last == 0: self.last = now elapsed = now - self.last if int(elapsed * self.rate): self.tokens += int(elapsed * self.rate) self.last = now self.tokens = ( self.rate if self.tokens > self.rate else self.tokens ) if self.tokens >= amount: self.tokens -= amount else: amount = 0 return amount throttle = Throttle(rate) req_groups = [ requests[i: i+rate] for i in range(0, len(requests), rate) ] ret = [] for req_group in req_groups: ret += grequests.map(req_group) while throttle.consume(): pass # 阻塞 print(ret)
GRequests-Throttle
这是一个使用令牌桶(token bucket)方法进行封装的GRequests修改版,使用方法很简单:
首先安装grequests-throttle(清华镜像源更新较慢,推荐使用阿里镜像源)
pip install grequests-throttle
import grequests_throttle as gt ret = gt.map(requests, rate=rate) print(ret)
以上就是关于Python并发请求下如何实现限制QPS的内容,如果你们有学习到知识或者技能,可以把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。