这篇文章主要讲解了Keras如何设定GPU使用内存大小,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
通过设置Keras的Tensorflow后端的全局变量达到。
import os
import tensorflow as tf
import keras.backend.tensorflow_backend as KTF
def get_session(gpu_fraction=0.3):
'''Assume that you have 6GB of GPU memory and want to allocate ~2GB'''
num_threads = os.environ.get('OMP_NUM_THREADS')
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)
if num_threads:
return tf.Session(config=tf.ConfigProto(
gpu_options=gpu_options, intra_op_parallelism_threads=num_threads))
else:
return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
使用过程中显示的设置session:
import keras.backend.tensorflow_backend as KTF
KTF.set_session(get_session())
补充知识:限制tensorflow的运行内存 (keras.backend.tensorflow)
我就废话不多说了,大家还是直接看代码吧!
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5 #half of the memory
set_session(tf.Session(config=config))
看完上述内容,是不是对Keras如何设定GPU使用内存大小有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。