温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Keras Dense层的详解

发布时间:2020-07-22 16:59:23 来源:亿速云 阅读:853 作者:小猪 栏目:开发技术

这篇文章主要讲解了Keras Dense层的详解,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。

我就废话不多说了,大家还是直接看代码吧!

'''
Created on 2018-4-4

'''
keras.layers.core.Dense(
units, #代表该层的输出维度
activation=None, #激活函数.但是默认 liner
use_bias=True, #是否使用b
kernel_initializer='glorot_uniform', #初始化w权重,keras/initializers.py
bias_initializer='zeros', #初始化b权重
kernel_regularizer=None, #施加在权重w上的正则项,keras/regularizer.py
bias_regularizer=None, #施加在偏置向量b上的正则项
activity_regularizer=None, #施加在输出上的正则项
kernel_constraint=None, #施加在权重w上的约束项
bias_constraint=None #施加在偏置b上的约束项
)

# 所实现的运算是output = activation(dot(input, kernel)+bias)
# model.add(Dense(units=64, activation='relu', input_dim=784))

# keras初始化所有激活函数,activation:
# keras\activations.py
# keras\backend\cntk_backend.py
# import cntk as C
# 1.softmax:
#       对输入数据的最后一维进行softmax,一般用在输出层;
#   ndim == 2,K.softmax(x),其实调用的是cntk,是一个模块;
#   ndim >= 2,e = K.exp(x - K.max(x)),s = K.sum(e),return e / s
# 2.elu
#   K.elu(x)
# 3.selu: 可伸缩的指数线性单元
#   alpha = 1.6732632423543772848170429916717
#   scale = 1.0507009873554804934193349852946
#   return scale * K.elu(x, alpha)
# 4.softplus
#   C.softplus(x)
# 5.softsign
#   return x / (1 + C.abs(x))
# 6.relu
#   def relu(x, alpha=0., max_value=None):
#     if alpha != 0.:
#       negative_part = C.relu(-x)
#     x = C.relu(x)
#     if max_value is not None:
#       x = C.clip(x, 0.0, max_value)
#     if alpha != 0.:
#       x -= alpha * negative_part
#     return x
# 7.tanh
#   return C.tanh(x)
# 8.sigmoid
#   return C.sigmoid(x)
# 9.hard_sigmoid
#   x = (0.2 * x) + 0.5
#   x = C.clip(x, 0.0, 1.0)
#   return x
# 10.linear
#   return x

# keras初始化所有方法,initializer:
# Zeros
# Ones
# Constant(固定一个值)
# RandomNormal(正态分布)
# RandomUniform(均匀分布)
# TruncatedNormal(截尾高斯分布,神经网络权重和滤波器的推荐初始化方法)
# VarianceScaling(该初始化方法能够自适应目标张量的shape)
# Orthogonal(随机正交矩阵初始化)
# Identiy(单位矩阵初始化,仅适用于2D方阵)
# lecun_uniform(LeCun均匀分布初始化)
# lecun_normal(LeCun正态分布初始化)
# glorot_normal(Glorot正态分布初始化)
# glorot_uniform(Glorot均匀分布初始化)
# he_normal(He正态分布初始化)
# he_uniform(He均匀分布初始化,Keras中文文档写错了)

# keras正则化,regularizer:
# import backend as K
# L1: regularization += K.sum(self.l1 * K.abs(x))
# L2: regularization += K.sum(self.l2 * K.square(x))

补充知识:keras.layers.Dense()方法及其参数

一、Dense层

keras.layers.Dense(units, 
  activation=None, 
  use_bias=True, 
  kernel_initializer='glorot_uniform', 
  bias_initializer='zeros', 
  kernel_regularizer=None, 
  bias_regularizer=None, 
   activity_regularizer=None, 
  kernel_constraint=None, 
  bias_constraint=None)

二、参数

units: 神经元节点数数,鸡输出空间维度。

activation: 激活函数,若不指定,则不使用激活函数 (即线性激活: a(x) = x)。

use_bias: 布尔值,该层是否使用偏置向量。

kernel_initializer: kernel 权值矩阵的初始化器

bias_initializer: 偏置向量的初始化器

kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数

bias_regularizer: 运用到偏置向的的正则化函数

activity_regularizer: 运用到层的输出的正则化函数 (它的 “activation”)。

kernel_constraint: 运用到 kernel 权值矩阵的约束函数

bias_constraint: 运用到偏置向量的约束函数

三、示例

例1:

from keras.layers import Dense

# 作为 Sequential 模型的第一层
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# 现在模型就会以尺寸为 (*, 16) 的数组作为输入,
# 其输出数组的尺寸为 (*, 32)

# 在第一层之后,你就不再需要指定输入的尺寸了:
model.add(Dense(32))

注意在Sequential模型的第一层要定义Dense层的形状,此处定义为input_shape=(16,)

例2:

from keras.layers import Dense

model = Sequential()
model.add(Dense(512, activation= 'sigmoid', input_dim= 2, use_bias= True))

这里定义了一个有512个神经元节点,使用sigmoid激活函数的神经层,此时输入形状参数为input_dim,注意它与input_shape参数的区别。

input_shape:即张量的形状,从前往后对应由外向内的维度

[[1],[2],[3]] 这个张量的shape为(3,1)

[[[1,2],[3,4]],[[5,6],[7,8]],[[9,10],[11,12]]]这个张量的shape为(3,2,2),

[1,2,3,4]这个张量的shape为(4,)

input_dim:代表张量的维度,之前3个例子的input_dim分别为2,3,1。

常见的一种用法:只提供了input_dim=32,说明输入是一个32维的向量,相当于一个一阶、拥有32个元素的张量,它的shape就是(32,)。因此,input_shape=(32, )

看完上述内容,是不是对Keras Dense层的详解有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI