温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python实现分组求和与分组累加求和的方法

发布时间:2020-07-23 16:12:46 来源:亿速云 阅读:724 作者:小猪 栏目:开发技术

这篇文章主要讲解了python实现分组求和与分组累加求和的方法,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。

我就废话不多说了,大家还是直接看代码吧!

# -*- encoding=utf-8 -*-
import pandas as pd
data=['abc','abc','abc','asc','ase','ase','ase']
num=[1,2,2,1,2,1,2]
df1=pd.DataFrame({'name':data,'num':num})
print(df1)

df1['mmm']=df1['num']
df2=df1.groupby(['name', 'num'], as_index=False).count()
print(df2)
df2.sort_values(['name', 'num'], ascending=[1, 1], inplace=True)
print(df2)
df2['sum']=df2.groupby(['name'])['mmm'].cumsum()
print(df2)
kk=df2.groupby(['name'],as_index=False)['num'].sum()
print(kk)
df3 = pd.merge(df2, kk, on='name', how='left',)
print(df3)
df3['ratio']=df3['sum']/df3['num_y']
df3.columns = ['name', 'num', 'mmm', 'sum','numsum','ratio']
print(df3)
df4=df3.groupby(['mmm'],as_index=False)['ratio'].mean()

print(df4)

运行:

 name num
0 abc  1
1 abc  2
2 abc  2
3 asc  1
4 ase  2
5 ase  1
6 ase  2
 name num mmm
0 abc  1  1
1 abc  2  2
2 asc  1  1
3 ase  1  1
4 ase  2  2
 name num mmm
0 abc  1  1
1 abc  2  2
2 asc  1  1
3 ase  1  1
4 ase  2  2
 name num mmm sum
0 abc  1  1  1
1 abc  2  2  3
2 asc  1  1  1
3 ase  1  1  1
4 ase  2  2  3
 name num
0 abc  3
1 asc  1
2 ase  3
 name num_x mmm sum num_y
0 abc   1  1  1   3
1 abc   2  2  3   3
2 asc   1  1  1   1
3 ase   1  1  1   3
4 ase   2  2  3   3
 name num mmm sum numsum   ratio
0 abc  1  1  1    3 0.333333
1 abc  2  2  3    3 1.000000
2 asc  1  1  1    1 1.000000
3 ase  1  1  1    3 0.333333
4 ase  2  2  3    3 1.000000
  mmm   ratio
0  1 0.555556
1  2 1.000000

Process finished with exit code 0

补充知识:python项目篇-对符合条件的某个字段进行求和,聚合函数annotate(),aggregate()函数

对符合条件的某个字段求和

需求是,计算每日的收入和

1、

 new_dayincome = request.POST.get("dayincome_time", None)

    # total_income = models.bathAccount.objects.filter(dayBath=new_dayincome).aggregate(nums=Sum('priceBath'))
    total_income = models.bathAccount.objects.values('priceBath').annotate(nums=Sum('priceBath')).filter(dayBath=new_dayincome)
    print("total_income",total_income[0]['nums'])

输出结果:total_income 132

2、

from django.db.models import Sum,Count
new_dayincome = request.POST.get("dayincome_time", None)

    total_income = models.bathAccount.objects.filter(dayBath=new_dayincome).aggregate(nums=Sum('priceBath'))
    print("total_income",total_income['nums'])

输出结果:total_income 572

第二种输出的是正确的数字

看完上述内容,是不是对python实现分组求和与分组累加求和的方法有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI