这篇文章主要讲解了如何实现numpy库ndarray多维数组的维度变换,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
numpy库对多维数组有非常灵巧的处理方式,主要的处理方法有:
.reshape(shape) : 不改变数组元素,返回一个shape形状的数组,原数组不变
.resize(shape) : 与.reshape()功能一致,但修改原数组
In [22]: a = np.arange(20)
#原数组不变
In [23]: a.reshape([4,5])
Out[23]:
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])
In [24]: a
Out[24]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19])
#修改原数组
In [25]: a.resize([4,5])
In [26]: a
Out[26]:
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])
.swapaxes(ax1,ax2) : 将数组n个维度中两个维度进行调换,不改变原数组
In [27]: a.swapaxes(1,0)
Out[27]:
array([[ 0, 5, 10, 15],
[ 1, 6, 11, 16],
[ 2, 7, 12, 17],
[ 3, 8, 13, 18],
[ 4, 9, 14, 19]])
.flatten() : 对数组进行降维,返回折叠后的一维数组,原数组不变
In [29]: a.flatten()
Out[29]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19])
看完上述内容,是不是对如何实现numpy库ndarray多维数组的维度变换有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。