这篇文章主要讲解了解决Python连接Hadoop数据中遇到的问题,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
最近准备使用Python+Hadoop+Pandas进行一些深度的分析与机器学习相关工作。(当然随着学习过程的进展,现在准备使用Python+Spark+Hadoop这样一套体系来搭建后续的工作环境),当然这是后话。
但是这项工作首要条件就是将Python与Hadoop进行打通,本来认为很容易的一项工作,没有想到竟然遇到各种坑,花费了整整半天时间。后来也在网上看到大家在咨询相同的问题,但是真正解决这个问题的帖子又几乎没有,所以现在将Python连接Hadoop数据库过程中遇到的各种坑进行一个汇总,然后与大家进行分享,以尽量避免大家花费宝贵的时间。
(说明一下:这篇文章中的各种坑的解决,翻阅了网上无数的帖子,最好一GIT上面一个帖子的角落里面带了这么一句,否则很容易翻船。但是由于帖子太多,所以我就不一一帖出来了)
首先是选组件,我选择的是使用:impala+Python3.7来连接Hadoop数据库,如果你不是的话,就不要浪费宝贵时间继续阅读了。
执行的代码如下:
import impala.dbapi as ipdb conn = ipdb.connect(host="192.168.XX.XXX",port=10000,user="xxx",password="xxxxxx",database="xxx",auth_mechanism='PLAIN') cursor = conn.cursor() #其中xxxx是表名,为了不涉及到公司的信息,我把表名隐藏掉了,大家自己换成自己数据库表名 cursor.execute('select * From xxxx') print(cursor.description) # prints the result set's schema for rowData in cursor.fetchall(): print(rowData) conn.close()
坑一:提示语法错误
现象:
/Users/wangxxin/miniconda3/bin/python3.7 /Users/wangxxin/Documents/Python/PythonDataAnalyze/project/knDt/pyHiveTest.py
Traceback (most recent call last):
File "/Users/wangxxin/Documents/Python/PythonDataAnalyze/project/knDt/pyHiveTest.py", line 1, in <module>
import impala.dbapi as ipdb
File "/Users/wangxxin/miniconda3/lib/python3.7/site-packages/impala/dbapi.py", line 28, in <module>
import impala.hiveserver2 as hs2
File "/Users/wangxxin/miniconda3/lib/python3.7/site-packages/impala/hiveserver2.py", line 340
async=True)
解决办法:将参数async全部修改为“async_”(当然这个可以随便,只要上下文一致,并且不是关键字即可),原因:在Python3.0中,已经将async标为关键词,如果再使用async做为参数,会提示语法错误;应该包括以下几个地方:
#hiveserver2.py文件338行左右 op = self.session.execute(self._last_operation_string, configuration, async_=True) #hiveserver2.py文件1022行左右 def execute(self, statement, configuration=None, async_=False): req = TExecuteStatementReq(sessionHandle=self.handle, statement=statement, confOverlay=configuration, runAsync=async_)
坑二:提供的Parser.py文件有问题,加载的时候会报错
解决办法:
#根据网上的意见对原代码进行调整 elif url_scheme in ('c', 'd', 'e', 'f'): with open(path) as fh: data = fh.read() elif url_scheme in ('http', 'https'): data = urlopen(path).read() else: raise ThriftParserError('ThriftPy does not support generating module ' 'with path in protocol \'{}\''.format( url_scheme))
以上的坑一、坑二建议你直接修改。这两点是肯定要调整的;
坑三:上面的两个问题处理好之后,继续运行,会报如下错误:
TProtocolException: TProtocolException(type=4)
解决办法:
原因是由于connect方法里面没有增加参数:auth_mechanism='PLAIN,修改如下所示:
import impala.dbapi as ipdb conn = ipdb.connect(host="192.168.XX.XXX",port=10000,user="xxx",password="xxxxxx",database="xxx",auth_mechanism='PLAIN')`
坑四:问题三修改好之后,继续运行程序,你会发现继续报错:
AttributeError: 'TSocket' object has no attribute 'isOpen'
解决办法:
由于是thrift-sasl的版本太高了(0.3.0),故将thrift-sasl的版本降级到0.2.1
pip uninstall thrift-sasl pip install thrift-sasl==0.2.1
坑五:处理完这个问题后,继续运行,继续报错(这个时间解决有点快崩溃的节奏了,但是请坚持住,其实你已经很快接近最后结果了):
thriftpy.transport.TTransportException: TTransportException(type=1, message="Could not start SASL: b'Error in sasl_client_start (-4) SASL(-4): no mechanism available: Unable to find a callback: 2'")
解决办法:这个是最麻烦的,也是目前最难找到解决办法的。
I solved the issue, had to uninstall the package SASL and install PURE-SASL, when impyla can´t find the sasl package it works with pure-sasl and then everything goes well.
主要原因其实还是因为sasl和pure-sasl有冲突,这种情况下,直接卸载sasl包就可能了。
pip uninstall SASL
坑六:但是执行完成,继续完成,可能还是会报错:
TypeError: can't concat str to bytes
定位到错误的最后一条,在init.py第94行(标黄的部分)
header = struct.pack(">BI", status, len(body)) #按照网上的提供的办法增加对BODY的处理 if (type(body) is str): body = body.encode() self._trans.write(header + body) self._trans.flush()
经过以上步骤,大家应该可以连接Hive库查询数据,应该是不存在什么问题了。
最后总结一下,连接Hadoop数据库中各种依赖包,请大家仔细核对一下依赖包(最好是依赖包相同,也就是不多不少[我说的是相关的包],这样真的可以避免很多问题的出现)
序号 | 包名 | 版本号 | 安装命令行 |
---|---|---|---|
1 | pure_sasl | 0.5.1 | pip install pure_sasl==0.5.1 -i https://pypi.tuna.tsinghua.edu.cn/simple |
2 | thrift | 0.9.3 | pip install thrift==0.9.3 -i https://pypi.tuna.tsinghua.edu.cn/simple |
3 | bitarray | 0.8.3 | pip install bitarray==0.8.3 -i https://pypi.tuna.tsinghua.edu.cn/simple |
4 | thrift_sasl | 0.2.1 | pip install thrift_sasl==0.2.1 -i https://pypi.tuna.tsinghua.edu.cn/simple |
5 | thriftpy | 0.3.9 | pip install thriftpy==0.3.9 -i https://pypi.tuna.tsinghua.edu.cn/simple |
6 | impyla | 0.14.1 | pip install impyla==0.14.1 -i https://pypi.tuna.tsinghua.edu.cn/simple |
建议按顺序安装,我这边之前有依赖包的问题,但是最终我是通过conda进行安装的。
其中在安装thriftpy、thrift_sasl、impyla报的时候报错,想到自己有conda,直接使用conda install,会自动下载依赖的包,如下所示(供没有conda环境的同学参考)
package | build | size |
---|---|---|
ply-3.11 | py37_0 | 80 KB |
conda-4.6.1 | py37_0 | 1.7 MB |
thriftpy-0.3.9 | py37h2de35cc_2 | 171 KB |
祝您好运!如果在实际过程中还是遇到各种各样的问题,请你留言。
最后有一点提示:
SQL里面不要带分号,否则会报错。但是这个就不是环境问题了。报错如下:
impala.error.HiveServer2Error: Error while compiling statement: FAILED: ParseException line 2:83 cannot recogniz
看完上述内容,是不是对解决Python连接Hadoop数据中遇到的问题有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。