温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Pandas中时间序列基础的示例分析

发布时间:2021-06-10 09:36:12 来源:亿速云 阅读:155 作者:小新 栏目:开发技术

小编给大家分享一下Pandas中时间序列基础的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

时间序列的类型:

时间戳:具体的时刻

固定的时间区间:例如2007年的1月或整个2010年

时间间隔:由开始时间和结束时间表示,时间区间可以被认为是间隔的特殊情况

实验时间和消耗时间:每个时间是相对于特定开始时间的时间的量度,(例如自从被放置在烤箱中每秒烘烤的饼干的直径)

日期和时间数据的类型及工具

datetime模块中的类型:

date   使用公历日历存储日历日期(年,月,日) 
time   将时间存储为小时,分钟,秒,微秒
datetime  存储日期和时间
timedelta  表示两个datetime值之间的差(如日,秒,微秒)
tzinfo  用于存储时区信息的基本类型

from datetime import datetime
now = datetime.now()
now.year  #当时年份
now.month  #当前月份
now.day  #当前天
now.time()  #当前时间
datetime.time(12, 27, 41, 303676)

 两个时间戳运算得到一个timedelta(时间差)类型

日期时间差 timedelta类型

from datetime import timedelta

start = datetime(2019,2,5)
start + timedelta(20)  #默认为天
datetime.datetime(2019, 2, 25, 0, 0)

字符串和datetime互相转换

date.strptime方法将字符串转换为时间

values = '2019-8-9'
datetime.strptime(values,'%Y-%m-%d')  #是在已知格式的前提下转换日期的好方式
datetime.datetime(2019, 8, 9, 0, 0)

datestrs = ['2019-8-7','2019-8-9']
[datetime.strptime(values,'%Y-%m-%d') for values in datestrs]
[datetime.datetime(2019, 8, 7, 0, 0), datetime.datetime(2019, 8, 9, 0, 0)]

更为通用的日期转换格式

from dateutil.parser import parse
parse(values)
datetime.datetime(2019, 8, 9, 0, 0)
parse('8,5,2018',dayfirst=True) #dayfirst参数 第一个元素是天
datetime.datetime(2018, 5, 8, 0, 0)

pd.to_datetime() 用于轴索引或DataFrame的列

pd.to_datetime(datestrs)
DatetimeIndex(['2019-08-07', '2019-08-09'], dtype='datetime64[ns]', freq=None)

更为简单的转换

datetime(2019,1,1)
datetime.datetime(2019, 1, 1, 0, 0)

时间序列的算术运算(在日期上自动对齐)

index = pd.date_range('3/3/2018',periods=20)
ts = pd.Series(np.random.randn(20),index=index)
ts
2018-03-03 0.611591
2018-03-04 0.119168
2018-03-05 0.514390
2018-03-06 1.010600
2018-03-07 0.181763
2018-03-08 -0.290964
2018-03-09 0.252927
2018-03-10 -1.645692
2018-03-11 -0.500014
2018-03-12 -1.247355

ts1 = ts[::2]
2018-03-03 0.611591
2018-03-05 0.514390
2018-03-07 0.181763
2018-03-09 0.252927
2018-03-11 -0.500014
2018-03-13 -0.122307
2018-03-15 0.361237
2018-03-17 -1.894853
2018-03-19 -1.608989
2018-03-21 1.274982
Freq: 2D, dtype: float64

ts + ts1
2018-03-03 1.223183
2018-03-04  NaN
2018-03-05 1.028781
2018-03-06  NaN
2018-03-07 0.363526
2018-03-08  NaN
2018-03-09 0.505853
2018-03-10  NaN
2018-03-11 -1.000028
2018-03-12  NaN
2018-03-13 -0.244613
2018-03-14  NaN
2018-03-15 0.722473
2018-03-16  NaN
2018-03-17 -3.789707
2018-03-18  NaN
2018-03-19 -3.217979
2018-03-20  NaN
2018-03-21 2.549963
2018-03-22  NaN

ts.index.dtype  #数据;类型在纳秒级的分辨率下存储时间戳
dtype('<M8[ns]')

ts.index[0]  #datetimeindex中的标量值是一个时间戳(timestamp)
Timestamp('2018-03-03 00:00:00', freq='D')

时间序列的索引,选择,子集

时间序列的索引

ts = pd.Series(np.random.randn(1000),index = pd.date_range('1/1/2016',periods=1000))

s['2018-6'] #时间序列的索引 也可用ts.loc[]
2018-06-01 1.371843
2018-06-02 -0.356041
2018-06-03 0.111452
2018-06-04 0.325222
2018-06-05 -0.863138
2018-06-06 -0.115909
2018-06-07 0.062894
2018-06-08 0.223712

时间序列的切片

ts['2018-9-23':]  #时间序列的切片
2018-09-23 0.005519
2018-09-24 -1.374038
2018-09-25 1.769112
2018-09-26 -0.000306
Freq: D, dtype: float64

ts.truncate(before='2018-9-24')  #使用truncate方法向后切片
2018-09-24 -1.374038
2018-09-25 1.769112
2018-09-26 -0.000306
Freq: D, dtype: float64

ts.truncate(after='2016-1-4')  #向前切片
2016-01-01 -1.776334
2016-01-02 -0.488550
2016-01-03 -1.299889
2016-01-04 -1.883413
Freq: D, dtype: float64

含有重复索引的时间序列的分组处理

index = pd.DatetimeIndex(['1/1/2017','1/1/2017','1/2/2017','1/3/2017'])
dup_ta = pd.Series(np.arange(4),index=index)
dup_ta
2017-01-01 0
2017-01-01 1
2017-01-02 2
2017-01-03 3
dtype: int32

dup_ta.groupby(level=0).mean()

看完了这篇文章,相信你对“Pandas中时间序列基础的示例分析”有了一定的了解,如果想了解更多相关知识,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI