使用pytorch怎么保证每次运行的随机数相同?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
其实在代码的开头添加下面几句话即可:
# 保证训练时获取的随机数都是一样的 init_seed = 1 torch.manual_seed(init_seed) torch.cuda.manual_seed(init_seed) np.random.seed(init_seed) # 用于numpy的随机数
torch.manual_seed(seed)
为了生成随机数设置种子。返回一个torch.Generator对象
参数:
seed (int) – 期望的种子数
torch.cuda.manual_seed(seed)
为当前GPU生成随机数设置种子。如果CUDA不可用,调用该方法也是安全的;在这种情况下,该调用就会被忽略
参数:
seed (int) – 期望的种子数
如果你使用的是多GPU模型,就要调用manual_seed_all(seed).
关于使用pytorch怎么保证每次运行的随机数相同问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注亿速云行业资讯频道了解更多相关知识。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。