这篇文章主要介绍了keras tensorflow如何实现在python下多进程运行,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
如下所示:
from multiprocessing import Process import os def training_function(...): import keras # 此处需要在子进程中 ... if __name__ == '__main__': p = Process(target=training_function, args=(...,)) p.start()
原文地址:https://stackoverflow.com/questions/42504669/keras-tensorflow-and-multiprocessing-in-python
1、DO NOT LOAD KERAS TO YOUR MAIN ENVIRONMENT. If you want to load Keras / Theano / TensorFlow do it only in the function environment. E.g. don't do this:
import keras def training_function(...): ...
but do the following:
def training_function(...): import keras ...
Run work connected with each model in a separate process: I'm usually creating workers which are making the job (like e.g. training, tuning, scoring) and I'm running them in separate processes. What is nice about it that whole memory used by this process is completely freedwhen your process is done. This helps you with loads of memory problems which you usually come across when you are using multiprocessing or even running multiple models in one process. So this looks e.g. like this:
def _training_worker(train_params): import keras model = obtain_model(train_params) model.fit(train_params) send_message_to_main_process(...) def train_new_model(train_params): training_process = multiprocessing.Process(target=_training_worker, args = train_params) training_process.start() get_message_from_training_process(...) training_process.join()
Different approach is simply preparing different scripts for different model actions. But this may cause memory errors especially when your models are memory consuming. NOTE that due to this reason it's better to make your execution strictly sequential.
感谢你能够认真阅读完这篇文章,希望小编分享的“keras tensorflow如何实现在python下多进程运行”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。