温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Tensorflow累加的实现案例

发布时间:2020-10-25 09:37:37 来源:脚本之家 阅读:172 作者:silent56_th 栏目:开发技术

由于python内部的变量其实都是reference,而Tensorflow实现的时候也没有意义去判断输出是否是同一变量名,从而判定是否要新建一个Tensor用于输出。Tensorflow为了满足所有需求,定义了两个不同的函数:tf.add和tf.assign_add。从名字即可看出区别,累加应该使用tf.assign_add。同理的还有tf.assign_sub和tf.assign。

具体地,笔者需要一个iteration counter类似的变量,即每次使用一个batch更新参数之后都使得该变量加一,进而控制learning rate等参数来调节学习过程。

最初的实现如下:

a = tf.Variable(tf.zeros(1))
a = tf.add(a,tf.ones(1))

sess = tf.Session()
sess.run(tf.global_variable_initializer())
for i in range(1000):
  print(sess.run(a))

那因为第一行代码输出的a和第二行代码输出的a,虽然变量名相同,但是实质指向的变量以及空间都不同,每次输出的都是1。

更改后的代码则是如下:

a = tf.Variable(tf.zeros(1))
a = tf.assign_add(a,tf.ones(1))

sess = tf.Session()
sess.run(tf.global_variable_initializer())
for i in range(1000):
  print(sess.run(a))

以上这篇Tensorflow累加的实现案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持亿速云。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI