在深度学习中,迁移学习经常被使用,在大数据集上预训练的模型迁移到特定的任务,往往需要保持模型参数不变,而微调与任务相关的模型层。
本文主要介绍,使用tensorflow部分更新模型参数的方法。
1. 根据Variable scope剔除需要固定参数的变量
def get_variable_via_scope(scope_lst): vars = [] for sc in scope_lst: sc_variable = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,scope=scope) vars.extend(sc_variable) return vars trainable_vars = tf.trainable_variables() no_change_scope = ['your_unchange_scope_name'] no_change_vars = get_variable_via_scope(no_change_scope) for v in no_change_vars: trainable_vars.remove(v) grads, _ = tf.gradients(loss, trainable_vars) optimizer = tf.train.AdamOptimizer(lr) train_op = optimizer.apply_gradient(zip(grads, trainable_vars), global_step=global_step)
2. 使用tf.stop_gradient()函数
在建立Graph过程中使用该函数,非常简洁地避免了使用scope获取参数
3. 一个矩阵中部分行或列参数更新
如果一个矩阵,只有部分行或列需要更新参数,其它保持不变,该场景很常见,例如word embedding中,一些预定义的领域相关词保持不变(使用领域相关word embedding初始化),而另一些通用词变化。
import tensorflow as tf import numpy as np def entry_stop_gradients(target, mask): mask_h = tf.abs(mask-1) return tf.stop_gradient(mask_h * target) + mask * target mask = np.array([1., 0, 1, 1, 0, 0, 1, 1, 0, 1]) mask_h = np.abs(mask-1) emb = tf.constant(np.ones([10, 5])) matrix = entry_stop_gradients(emb, tf.expand_dims(mask,1)) parm = np.random.randn(5, 1) t_parm = tf.constant(parm) loss = tf.reduce_sum(tf.matmul(matrix, t_parm)) grad1 = tf.gradients(loss, emb) grad2 = tf.gradients(loss, matrix) print matrix with tf.Session() as sess: print sess.run(loss) print sess.run([grad1, grad2])
以上这篇Tensorflow实现部分参数梯度更新操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持亿速云。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。