这篇文章主要介绍了TensorFLow如何实现不同大小图片的TFrecords存取,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
全部存入一个TFrecords文件,然后读取并显示第一张。
示例:
from PIL import Image import numpy as np import matplotlib.pyplot as plt import tensorflow as tf IMAGE_PATH = 'test/' tfrecord_file = IMAGE_PATH + 'test.tfrecord' writer = tf.python_io.TFRecordWriter(tfrecord_file) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def get_image_binary(filename): """ You can read in the image using tensorflow too, but it's a drag since you have to create graphs. It's much easier using Pillow and NumPy """ image = Image.open(filename) image = np.asarray(image, np.uint8) shape = np.array(image.shape, np.int32) return shape, image.tobytes() # convert image to raw data bytes in the array. def write_to_tfrecord(label, shape, binary_image, tfrecord_file): """ This example is to write a sample to TFRecord file. If you want to write more samples, just use a loop. """ # write label, shape, and image content to the TFRecord file example = tf.train.Example(features=tf.train.Features(feature={ 'label': _int64_feature(label), 'h': _int64_feature(shape[0]), 'w': _int64_feature(shape[1]), 'c': _int64_feature(shape[2]), 'image': _bytes_feature(binary_image) })) writer.write(example.SerializeToString()) def write_tfrecord(label, image_file, tfrecord_file): shape, binary_image = get_image_binary(image_file) write_to_tfrecord(label, shape, binary_image, tfrecord_file) # print(shape) def main(): # assume the image has the label Chihuahua, which corresponds to class number 1 label = [1,2] image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg'] for i in range(2): write_tfrecord(label[i], image_files[i], tfrecord_file) writer.close() batch_size = 2 filename_queue = tf.train.string_input_producer([tfrecord_file]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) img_features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'h': tf.FixedLenFeature([], tf.int64), 'w': tf.FixedLenFeature([], tf.int64), 'c': tf.FixedLenFeature([], tf.int64), 'image': tf.FixedLenFeature([], tf.string), }) h = tf.cast(img_features['h'], tf.int32) w = tf.cast(img_features['w'], tf.int32) c = tf.cast(img_features['c'], tf.int32) image = tf.decode_raw(img_features['image'], tf.uint8) image = tf.reshape(image, [h, w, c]) label = tf.cast(img_features['label'],tf.int32) label = tf.reshape(label, [1]) # image = tf.image.resize_images(image, (500,500)) #image, label = tf.train.batch([image, label], batch_size= batch_size) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) image, label=sess.run([image, label]) coord.request_stop() coord.join(threads) print(label) plt.figure() plt.imshow(image) plt.show() if __name__ == '__main__': main()
全部存入一个TFrecords文件,然后按照batch_size读取,注意需要将图片变成一样大才能按照batch_size读取。
from PIL import Image import numpy as np import matplotlib.pyplot as plt import tensorflow as tf IMAGE_PATH = 'test/' tfrecord_file = IMAGE_PATH + 'test.tfrecord' writer = tf.python_io.TFRecordWriter(tfrecord_file) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def get_image_binary(filename): """ You can read in the image using tensorflow too, but it's a drag since you have to create graphs. It's much easier using Pillow and NumPy """ image = Image.open(filename) image = np.asarray(image, np.uint8) shape = np.array(image.shape, np.int32) return shape, image.tobytes() # convert image to raw data bytes in the array. def write_to_tfrecord(label, shape, binary_image, tfrecord_file): """ This example is to write a sample to TFRecord file. If you want to write more samples, just use a loop. """ # write label, shape, and image content to the TFRecord file example = tf.train.Example(features=tf.train.Features(feature={ 'label': _int64_feature(label), 'h': _int64_feature(shape[0]), 'w': _int64_feature(shape[1]), 'c': _int64_feature(shape[2]), 'image': _bytes_feature(binary_image) })) writer.write(example.SerializeToString()) def write_tfrecord(label, image_file, tfrecord_file): shape, binary_image = get_image_binary(image_file) write_to_tfrecord(label, shape, binary_image, tfrecord_file) # print(shape) def main(): # assume the image has the label Chihuahua, which corresponds to class number 1 label = [1,2] image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg'] for i in range(2): write_tfrecord(label[i], image_files[i], tfrecord_file) writer.close() batch_size = 2 filename_queue = tf.train.string_input_producer([tfrecord_file]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) img_features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'h': tf.FixedLenFeature([], tf.int64), 'w': tf.FixedLenFeature([], tf.int64), 'c': tf.FixedLenFeature([], tf.int64), 'image': tf.FixedLenFeature([], tf.string), }) h = tf.cast(img_features['h'], tf.int32) w = tf.cast(img_features['w'], tf.int32) c = tf.cast(img_features['c'], tf.int32) image = tf.decode_raw(img_features['image'], tf.uint8) image = tf.reshape(image, [h, w, c]) label = tf.cast(img_features['label'],tf.int32) label = tf.reshape(label, [1]) image = tf.image.resize_images(image, (224,224)) image = tf.reshape(image, [224, 224, 3]) image, label = tf.train.batch([image, label], batch_size= batch_size) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) image, label=sess.run([image, label]) coord.request_stop() coord.join(threads) print(image.shape) print(label) plt.figure() plt.imshow(image[0,:,:,0]) plt.show() plt.figure() plt.imshow(image[0,:,:,1]) plt.show() image1 = image[0,:,:,:] print(image1.shape) print(image1.dtype) im = Image.fromarray(np.uint8(image1)) #参考numpy和图片的互转:http://blog.csdn.net/zywvvd/article/details/72810360 im.show() if __name__ == '__main__': main()
输出是
(2, 224, 224, 3) [[1] [2]] 第一张图片的三种显示(略)
封装成函数:
# -*- coding: utf-8 -*- """ Created on Fri Sep 8 14:38:15 2017 @author: wayne """ ''' 本文参考了以下代码,在多个不同大小图片存取方面做了重新开发: https://github.com/chiphuyen/stanford-tensorflow-tutorials/blob/master/examples/09_tfrecord_example.py http://blog.csdn.net/hjxu2016/article/details/76165559 https://stackoverflow.com/questions/41921746/tensorflow-varlenfeature-vs-fixedlenfeature https://github.com/tensorflow/tensorflow/issues/10492 后续: -存入多个TFrecords文件的例子见 http://blog.csdn.net/xierhacker/article/details/72357651 -如何作shuffle和数据增强 string_input_producer (需要理解tf的数据流,标签队列的工作方式等等) http://blog.csdn.net/liuchonge/article/details/73649251 ''' from PIL import Image import numpy as np import matplotlib.pyplot as plt import tensorflow as tf IMAGE_PATH = 'test/' tfrecord_file = IMAGE_PATH + 'test.tfrecord' writer = tf.python_io.TFRecordWriter(tfrecord_file) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def get_image_binary(filename): """ You can read in the image using tensorflow too, but it's a drag since you have to create graphs. It's much easier using Pillow and NumPy """ image = Image.open(filename) image = np.asarray(image, np.uint8) shape = np.array(image.shape, np.int32) return shape, image.tobytes() # convert image to raw data bytes in the array. def write_to_tfrecord(label, shape, binary_image, tfrecord_file): """ This example is to write a sample to TFRecord file. If you want to write more samples, just use a loop. """ # write label, shape, and image content to the TFRecord file example = tf.train.Example(features=tf.train.Features(feature={ 'label': _int64_feature(label), 'h': _int64_feature(shape[0]), 'w': _int64_feature(shape[1]), 'c': _int64_feature(shape[2]), 'image': _bytes_feature(binary_image) })) writer.write(example.SerializeToString()) def write_tfrecord(label, image_file, tfrecord_file): shape, binary_image = get_image_binary(image_file) write_to_tfrecord(label, shape, binary_image, tfrecord_file) def read_and_decode(tfrecords_file, batch_size): '''''read and decode tfrecord file, generate (image, label) batches Args: tfrecords_file: the directory of tfrecord file batch_size: number of images in each batch Returns: image: 4D tensor - [batch_size, width, height, channel] label: 1D tensor - [batch_size] ''' # make an input queue from the tfrecord file filename_queue = tf.train.string_input_producer([tfrecord_file]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) img_features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'h': tf.FixedLenFeature([], tf.int64), 'w': tf.FixedLenFeature([], tf.int64), 'c': tf.FixedLenFeature([], tf.int64), 'image': tf.FixedLenFeature([], tf.string), }) h = tf.cast(img_features['h'], tf.int32) w = tf.cast(img_features['w'], tf.int32) c = tf.cast(img_features['c'], tf.int32) image = tf.decode_raw(img_features['image'], tf.uint8) image = tf.reshape(image, [h, w, c]) label = tf.cast(img_features['label'],tf.int32) label = tf.reshape(label, [1]) ########################################################## # you can put data augmentation here # distorted_image = tf.random_crop(images, [530, 530, img_channel]) # distorted_image = tf.image.random_flip_left_right(distorted_image) # distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) # distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8) # distorted_image = tf.image.resize_images(distorted_image, (imagesize,imagesize)) # float_image = tf.image.per_image_standardization(distorted_image) image = tf.image.resize_images(image, (224,224)) image = tf.reshape(image, [224, 224, 3]) #image, label = tf.train.batch([image, label], batch_size= batch_size) image_batch, label_batch = tf.train.batch([image, label], batch_size= batch_size, num_threads= 64, capacity = 2000) return image_batch, tf.reshape(label_batch, [batch_size]) def read_tfrecord2(tfrecord_file, batch_size): train_batch, train_label_batch = read_and_decode(tfrecord_file, batch_size) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) train_batch, train_label_batch = sess.run([train_batch, train_label_batch]) coord.request_stop() coord.join(threads) return train_batch, train_label_batch def main(): # assume the image has the label Chihuahua, which corresponds to class number 1 label = [1,2] image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg'] for i in range(2): write_tfrecord(label[i], image_files[i], tfrecord_file) writer.close() batch_size = 2 # read_tfrecord(tfrecord_file) # 读取一个图 train_batch, train_label_batch = read_tfrecord2(tfrecord_file, batch_size) print(train_batch.shape) print(train_label_batch) plt.figure() plt.imshow(train_batch[0,:,:,0]) plt.show() plt.figure() plt.imshow(train_batch[0,:,:,1]) plt.show() train_batch2 = train_batch[0,:,:,:] print(train_batch.shape) print(train_batch2.dtype) im = Image.fromarray(np.uint8(train_batch2)) #参考numpy和图片的互转:http://blog.csdn.net/zywvvd/article/details/72810360 im.show() if __name__ == '__main__': main()
感谢你能够认真阅读完这篇文章,希望小编分享的“TensorFLow如何实现不同大小图片的TFrecords存取”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。