这篇文章将为大家详细讲解有关如何在pytorch中使用nn.Conv1d,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
先粘贴一段official guide:nn.conv1d官方
我一开始被in_channels、out_channels卡住了很久,结果发现就和conv2d是一毛一样的。话不多说,先粘代码(菜鸡的自我修养)
class CNN1d(nn.Module):
def __init__(self):
super(CNN1d,self).__init__()
self.layer1 = nn.Sequential(
nn.Conv1d(1,100,2),
nn.BatchNorm1d(100),
nn.ReLU(),
nn.MaxPool1d(8))
self.layer2 = nn.Sequential(
nn.Conv1d(100,50,2),
nn.BatchNorm1d(50),
nn.ReLU(),
nn.MaxPool1d(8))
self.fc = nn.Linear(300,6)
def forward(self,x):
#input.shape:(16,1,425)
out = self.layer1(x)
out = out.view(out.size(0),-1)
out = self.fc(out)
return out
输入的数据格式是(batch_size,word_vector,sequence_length),我设置的batch=16,特征工程样本是1x425,套用该格式就应该是(16,1,425)。对应nn.Conv1d的in_channels=1,out_channels就是你自己设置的,我选择的是100。
关于如何在pytorch中使用nn.Conv1d就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。