温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python箱型图处理离群点的示例分析

发布时间:2021-07-26 14:04:31 来源:亿速云 阅读:249 作者:小新 栏目:开发技术

这篇文章将为大家详细讲解有关Python箱型图处理离群点的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

首先我们简单地区分一下离群点(outlier)以及异常值(anomaly):

离群点:

Python箱型图处理离群点的示例分析

异常值:

个人觉着异常值和离群点是两个不同的概念,当然大家在数据预处理时对于这两个概念不做细致的区分,不如:姚明站在我们中间的时候,我觉着我们只能说他是一个离群点,我们能说他异常吗?异常的假设是姚明得了巨人症,可是他不是。

箱型图

Python箱型图处理离群点的示例分析

Python箱型图处理离群点的示例分析

代码块

餐饮销售数据离群点检测代码:

#-*- coding: utf-8 -*-
import pandas as pd

catering_sale = '../data/catering_sale.xls' #餐饮数据
data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列

import matplotlib.pyplot as plt #导入图像库
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

plt.figure() #建立图像
p = data.boxplot(return_type='dict') #画箱线图,直接使用DataFrame的方法
x = p['fliers'][0].get_xdata() # 'fliers'即为离群点的标签
y = p['fliers'][0].get_ydata()
y.sort() #从小到大排序,该方法直接改变原对象

#用annotate添加注释
#其中有些相近的点,注解会出现重叠,难以看清,需要一些技巧来控制。
#以下参数都是经过调试的,需要具体问题具体调试。
for i in range(len(x)): 
 if i > 0:
  plt.annotate(y[i], xy = (x[i],y[i]), xytext=(x[i]+0.05 -0.8/(y[i]-y[i-1]),y[i]))
 else:
  plt.annotate(y[i], xy = (x[i],y[i]), xytext=(x[i]+0.08,y[i]))

plt.show() #展示箱线图

运行结果:

Python箱型图处理离群点的示例分析

关于“Python箱型图处理离群点的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI