温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

pandas 空数据处理方法详解

发布时间:2020-09-05 15:14:47 来源:脚本之家 阅读:230 作者:蔡文君 栏目:开发技术

这篇文章主要介绍了pandas 空数据处理方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

方法一:直接删除

1.查看行或列是否有空格(以下的df为DataFrame类型,axis=0,代表列,axis=1代表行,以下的返回值都是行或列索引加上布尔值)

isnull方法

查看行:df.isnull().any(axis=1)

查看列:df.isnull().any(axis=0)

notnull方法:

查看行:df.notnull().all(axis=1)

查看列:df.notnull().all(axis=0)

例子:

df.isnull().any(axis=1) # 检测行内是否有空值
0 False
1 True
2 False
3 True
4 False
5 True
6 False
7 True
8 False
9 False
dtype: bool

注意点:以上方法都可以用~取反的办法获取相反的结果

2.在1的前提下使用df.loc[],可取出1中筛选出数据的具体数据如:

df.loc[df.isnull().any(axis=1)]

取出这几行的索引可用属性index如:df.loc[df.isnull().any(axis=1)].index

得到这些索引后可以使用drop方法进行删除如:

注意:drop方法中的axis值与其他方法相反,axis=0表示行,=1表示列。

df.drop(labels=drop_index, axis=0)

总结下来为4步:

一.使用isnull或notnull筛选:df.isnull().any(axis=0)

二.使用loc取出具体数据:df.loc[df.isnull().any(axis=1)]

三:取出这些数据的索引:df.loc[df.isnull().any(axis=1)].index

四.使用drop删除:df.drop(labels=drop_index, axis=0)

方法二:填充空值

步骤和方法一前几步相同

isnull()

notnull()

dropna(): 过滤丢失数据(df.dropna() 可以选择过滤的是行还是列(默认为行):axis中0表示行,1表示的列)

fillna(): 填充丢失数据(可以选择自主添加数据,或者用表中原有的数据进行补充)

1.使用dropna(不常用):df.dropna(axis=0)

2.使用fillna(常用):

一.df.fillna(value=666)给所有的控制赋值为666

二.df.fillna(method='ffill', axis=0) # axis=0表示在垂直方向填充(axis值:0为垂直,1为水平),使用上方的值对空值进行填充,组合起来就是,使用垂直方向上方的值对当前位置的值进行填充

三.df.fillna(method='bfill', axis=1) # axis=1表示在水平方向填充(axis值为0垂直1为水平),bfill表示使用后面的值对空值进行填充,组合起来就是,使用水平方向右边的值对当前位置的值进行填充

总结:ffill(前)和bfill(后)决定前或后,axis决定垂直或水平

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持亿速云。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI