温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用python代码实现余弦相似性计算

发布时间:2021-08-06 14:26:21 来源:亿速云 阅读:147 作者:小新 栏目:开发技术

这篇文章主要介绍如何使用python代码实现余弦相似性计算,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

A:西米喜欢健身

B:超超不爱健身,喜欢打游戏

step1:分词

A:西米/喜欢/健身

B:超超/不/喜欢/健身,喜欢/打/游戏

step2:列出两个句子的并集

西米/喜欢/健身/超超/不/打/游戏

step3:计算词频向量

A:[1,1,1,0,0,0,0]

B:[0,1,1,1,1,1,1]

step4:计算余弦值

如何使用python代码实现余弦相似性计算

余弦值越大,证明夹角越小,两个向量越相似。

step5:python代码实现

import jieba
import jieba.analyse
def words2vec(words1=None, words2=None):
 v1 = []
 v2 = []
 tag1 = jieba.analyse.extract_tags(words1, withWeight=True)
 tag2 = jieba.analyse.extract_tags(words2, withWeight=True)
 tag_dict1 = {i[0]: i[1] for i in tag1}
 tag_dict2 = {i[0]: i[1] for i in tag2}
 merged_tag = set(tag_dict1.keys()) | set(tag_dict2.keys())
 for i in merged_tag:
  if i in tag_dict1:
   v1.append(tag_dict1[i])
  else:
   v1.append(0)
  if i in tag_dict2:
   v2.append(tag_dict2[i])
  else:
   v2.append(0)
 return v1, v2
def cosine_similarity(vector1, vector2):
 dot_product = 0.0
 normA = 0.0
 normB = 0.0
 for a, b in zip(vector1, vector2):
  dot_product += a * b
  normA += a ** 2
  normB += b ** 2
 if normA == 0.0 or normB == 0.0:
  return 0
 else:
  return round(dot_product / ((normA**0.5)*(normB**0.5)) * 100, 2)  
def cosine(str1, str2):
 vec1, vec2 = words2vec(str1, str2)
 return cosine_similarity(vec1, vec2)
print(cosine('阿克苏苹果', '阿克苏苹果'))

以上是“如何使用python代码实现余弦相似性计算”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI