本篇文章为大家展示了如何在pytorch获取vgg16-feature层的输出,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
import numpy as np
import torch
from torchvision import models
from torch.autograd import Variable
import torchvision.transforms as transforms
class CNNShow():
def __init__(self, model):
self.model = model
self.model.eval()
self.created_image = self.image_for_pytorch(np.uint8(np.random.uniform(150, 180, (224, 224, 3))))
def show(self):
x = self.created_image
for index, layer in enumerate(self.model):
print(index,layer)
x = layer(x)
def image_for_pytorch(self,Data):
transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
]
)
imData = transform(Data)
imData = Variable(torch.unsqueeze(imData, dim=0), requires_grad=True)
return imData
if __name__ == '__main__':
pretrained_model = models.vgg16(pretrained=True).features
CNN = CNNShow(pretrained_model)
CNN.show()
上述内容就是如何在pytorch获取vgg16-feature层的输出,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。