温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

pytorch如何固定部分参数训练

发布时间:2021-08-18 10:53:09 来源:亿速云 阅读:374 作者:小新 栏目:开发技术

这篇文章主要为大家展示了“pytorch如何固定部分参数训练”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pytorch如何固定部分参数训练”这篇文章吧。

pytorch如何固定部分参数训练

需要自己过滤

optimizer.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)

另外,如果是Variable,则可以初始化时指定

j = Variable(torch.randn(5,5), requires_grad=True)

但是如果是

m = nn.Linear(10,10)

是没有requires_grad传入的

m.requires_grad也没有

需要

for i in m.parameters():
  i.requires_grad=False

另外一个小技巧就是在nn.Module里,可以在中间插入这个

for p in self.parameters():
  p.requires_grad=False

这样前面的参数就是False,而后面的不变

class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, 6, 5)
    self.conv2 = nn.Conv2d(6, 16, 5)

    for p in self.parameters():
      p.requires_grad=False

    self.fc1 = nn.Linear(16 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)

以上是“pytorch如何固定部分参数训练”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI