温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python中怎么实现二维数组与三维数组切片

发布时间:2021-08-12 16:13:36 来源:亿速云 阅读:232 作者:Leah 栏目:开发技术

本篇文章给大家分享的是有关Python中怎么实现二维数组与三维数组切片,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

如果对象是二维数组,则切片应当是x[:]的形式,里面有一个冒号,冒号之前和之后分别表示对象的第0个维度和第1个维度;

如果对象是三维数组,则切片应当是x[::],里面有两个冒号,分割出三个间隔,三个间隔的前、中和后分别表示对象的第0、1、2个维度。

x[n,:]、x[:,n]、x[m:n,:]、x[:,m:n]

上面的中括号中(m:n)应当看成一个整体,除了(m:n)之外的冒号就是用来表明在哪个维度上操作的。

对于二维数组,在冒号前面的(n,)意味着对二维数组的第0个维度上的第n号元素操作,在冒号后面的(,n)意味着对二维数组的第1个维度上的第n号元素进行操作。如果n替换成(m:n)则表示对第m号到第n-1号元素操作。

举例:

import numpy as np

a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20]])
print(a.shape)
print(a[0, :], a[0, :].shape)
print(a[1, :], a[1, :].shape)
print(a[-1, :], a[-1, :].shape)
print(a[0:2, :], a[0:2, :].shape)
print(a[:, 0], a[:, 0].shape)
print(a[:, 1], a[:, 1].shape)
print(a[:, -1], a[:, -1].shape)
print(a[:, 0:2], a[:, 0:2].shape)

 运行结果如下:

(5, 4)
[1 2 3 4] (4,)
[5 6 7 8] (4,)
[17 18 19 20] (4,)
[[1 2 3 4]
 [5 6 7 8]] (2, 4)
[ 1 5 9 13 17] (5,)
[ 2 6 10 14 18] (5,)
[ 4 8 12 16 20] (5,)
[[ 1 2]
 [ 5 6]
 [ 9 10]
 [13 14]
 [17 18]] (5, 2)

Process finished with exit code 0

上例中,a是shape=(5,4)的数组。第0个维度上有5个元素,第1个维度上有4个元素(元素不一定是单个值, 也可能是数组,这里的元素的叫法是相对于某个维度而言的)。

  • a[0, :]、a[1, :]、a[-1, :]分别提取了a的第0个维度上的第0、1和-1个元素,每个元素都是一个含有4个元素的数组。

  • a[0:2, :]提取了a的第0个维度上的第0和1两个元素,两个元素都是一个含有4个元素的数组,共同组成一个二维数组。

  • a[:, 0]、a[:, 1]、a[:, -1]分别提取了a的第1个维度上的0、1和-1个元素,每个元素都是单个元素值。

  • a[:, 0:2]提取了a的第1个维度上的第0和1两个元素,两个元素都是单个元素值,共同组成一个二维数组。

x[n,::]、x[:,n:]、x[::,n]、x[:,:,n]、x[m:n,::]、x[:,m:n:]、x[::,m:n]、x[:,:,m:n]

上面的中括号中(m:n)应当看成一个整体,除了(m:n)之外的两个冒号就是用来表明在哪个维度上操作的。

对于三维数组,在双冒号的最前面的(n,)意味着对三维数组的第0个维度上的第n号元素操作,在双冒号的中间的(,n)意味着对三维数组的第1个维度上的第n号元素进行操作,在双冒号的后面的(,n)意味着对三维数组的第2个维度上的第n号元素进行操作。如果n替换成(m:n)则表示对第m号到第n-1号元素操作。

举例:

import numpy as np

b = np.array([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
       [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]],
       [[25, 26, 27, 28], [29, 30, 31, 32], [33, 34, 35, 36]],
       ])

print(b.shape)
print("b[0, ::],b[1, ::],b[-1, ::],b[0:2, ::]")
print(b[0, ::], b[0, ::].shape)
print(b[1, ::], b[1, ::].shape)
print(b[-1, ::], b[-1, ::].shape)
print(b[0:2, ::], b[0:2, ::].shape)
print("b[:, 0:],b[:, 1:],b[:, -1:],b[:, 0:2:]")
print(b[:, 0:], b[:, 0:].shape)
print(b[:, 1:], b[:, 1:].shape)
print(b[:, -1:], b[:, -1:].shape)
print(b[:, 0:2:], b[:, 0:2:].shape)
print("b[::, 0],b[::, 1],b[::, -1],b[::, 0:2:]")
print(b[::, 0], b[::, 0].shape)
print(b[::, 1], b[::, 1].shape)
print(b[::, -1], b[::, -1].shape)
print(b[::, 0:2:], b[::, 0:2].shape)
print("b[:,:, 0],b[:,:, 1],b[:,:, -1],b[:,:, 0:2:]")
print(b[:, :, 0], b[:, :, 0].shape)
print(b[:, :, 1], b[:, :, 1].shape)
print(b[:, :, -1], b[:, :, -1].shape)
print(b[:, :, 0:2:], b[:, :, 0:2].shape)

运行结果如下:

(3, 3, 4)
b[0, ::],b[1, ::],b[-1, ::],b[0:2, ::]
[[ 1 2 3 4]
 [ 5 6 7 8]
 [ 9 10 11 12]] (3, 4)
[[13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]] (3, 4)
[[25 26 27 28]
 [29 30 31 32]
 [33 34 35 36]] (3, 4)
[[[ 1 2 3 4]
 [ 5 6 7 8]
 [ 9 10 11 12]]

 [[13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]]] (2, 3, 4)
b[:, 0:],b[:, 1:],b[:, -1:],b[:, 0:2:]
[[[ 1 2 3 4]
 [ 5 6 7 8]
 [ 9 10 11 12]]

 [[13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]]

 [[25 26 27 28]
 [29 30 31 32]
 [33 34 35 36]]] (3, 3, 4)
[[[ 5 6 7 8]
 [ 9 10 11 12]]

 [[17 18 19 20]
 [21 22 23 24]]

 [[29 30 31 32]
 [33 34 35 36]]] (3, 2, 4)
[[[ 9 10 11 12]]

 [[21 22 23 24]]

 [[33 34 35 36]]] (3, 1, 4)
[[[ 1 2 3 4]
 [ 5 6 7 8]]

 [[13 14 15 16]
 [17 18 19 20]]

 [[25 26 27 28]
 [29 30 31 32]]] (3, 2, 4)
b[::, 0],b[::, 1],b[::, -1],b[::, 0:2:]
[[ 1 2 3 4]
 [13 14 15 16]
 [25 26 27 28]] (3, 4)
[[ 5 6 7 8]
 [17 18 19 20]
 [29 30 31 32]] (3, 4)
[[ 9 10 11 12]
 [21 22 23 24]
 [33 34 35 36]] (3, 4)
[[[ 1 2 3 4]
 [ 5 6 7 8]]

 [[13 14 15 16]
 [17 18 19 20]]

 [[25 26 27 28]
 [29 30 31 32]]] (3, 2, 4)
b[:,:, 0],b[:,:, 1],b[:,:, -1],b[:,:, 0:2:]
[[ 1 5 9]
 [13 17 21]
 [25 29 33]] (3, 3)
[[ 2 6 10]
 [14 18 22]
 [26 30 34]] (3, 3)
[[ 4 8 12]
 [16 20 24]
 [28 32 36]] (3, 3)
[[[ 1 2]
 [ 5 6]
 [ 9 10]]

 [[13 14]
 [17 18]
 [21 22]]

 [[25 26]
 [29 30]
 [33 34]]] (3, 3, 2)

Process finished with exit code 0

上例中,b是shape=(3,3,4)的数组。第0个维度上有3个元素,第1个维度上有3个元素,第2个维度上有4个元素(元素不一定是单个值, 也可能是数组,这里的元素的叫法是相对于某个维度而言的)。

  • b[0, ::]、b[1, ::]、b[-1, ::]分别提取了b的第0个维度上的第0、1和-1个元素,每个元素都是一个二维数组。

  • b[0:2, ::]提取了b的第0个维度上的第0和1两个元素,两个元素都是一个二维数组,共同组成一个三维数组。

  • b[:, 0:]、b[:, 1:]、b[:, -1:]分别提取了b的全部元素(都是由4个元素的单个数组)、b的第1个维度上除第0号外的所有元素(都是由4个元素的单个数组)、b的第1个维度上的所有最后一个位置上的元素(都是由4个元素的单个数组)。

  • b[:, 0:2:]提取了b的第1个维度上的第0和1两个元素,两个元素都是一个有4个元素的数组,共同组成一个三维数组。

  • b[::, 0]、b[::, 1]、b[::, -1]分别提取了b的第2个维度上的0、1和-1个元素(这里的元素就是单个有4个元素的数组),每个元素都是有4个元素的数组。

  • b[::, 0:2]提取了b的第2个维度上的第0和1两个元素(这里的元素就是单个有4个元素的数组),两个元素都是有4个元素的数组。

  • b[:,:, 0]、b[:,:, 1]、b[:,:, -1]分别提取了b的第2个维度的所有元素(即有4个元素的数组)中的第0、1和-1个元素值,每个元素都是单个元素值。

  • b[:,:, 0:2]提取了b的第2个维度的所有元素(即有4个元素的数组)中的第0和1两个元素值,两个元素都是单个元素值。

以上就是Python中怎么实现二维数组与三维数组切片,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI