这篇文章主要介绍pandas中如何进行时间数据的转换和计算时间差并提取年月日,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
#pd.to_datetime函数
#读取数据 import pandas as pd data = pd.read_csv('police.csv') #将stop_date转化为datetime的格式的dataframe,存到stop_datetime data['stop_datetime'] = pd.to_datetime(data.stop_date')
#自定义一个时间,计算时间差
data_new = pd.to_datetime('2006-01-01') data['time_d'] = time_new - data.stop_datetime data['time_d'].head()
#统计各年份和月份出现的次数
data.stop_datetime.dt.year.value_counts() data.stop_datetime.dt.month.value_counts()
#提取年、月、日
#提取年 data['year'] = data.stop_datetime.dt.year data['year'].head() #提取月份 data['month'] = data.stop_datetime.dt.month data['month'].head() #提取日 data['day'] = data.stop_datetime.dt.day data['day'].head()
#使用时间序列数据绘图
data['stop_time_datetime'] = pd.to_datetime(data.stop_time) data.groupby(data.stop_time_datetime.dt.hour).drugs_related_stop.sum().plot()
以上是“pandas中如何进行时间数据的转换和计算时间差并提取年月日”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。