温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么在NodeJS中实现Https HSM双向认证

发布时间:2021-06-01 18:07:08 来源:亿速云 阅读:182 作者:Leah 栏目:web开发

怎么在NodeJS中实现Https HSM双向认证?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

NodeJS可以利用openSSL的HSM plugin方式实现,但是需要编译C++,太麻烦,作者采用了利用Node Socket接口,纯JS自行实现Https/Http协议的方式实现

具体实现可以参考如下 node-https-hsm

TLS规范自然是参考RFC文档 The Transport Layer Security (TLS) Protocol Version 1.2

概述

本次TLS双向认证支持以下加密套件(*为建议使用套件):

  • TLS_RSA_WITH_AES_128_CBC_SHA256(TLS v1.2) *

  • TLS_RSA_WITH_AES_256_CBC_SHA256(TLS v1.2) *

  • TLS_RSA_WITH_AES_128_CBC_SHA(TLS v1.1)

  • TLS_RSA_WITH_AES_256_CBC_SHA(TLS v1.1)

四种加密套件流程完全一致,只是部分算法细节与报文略有差异,体现在

  • AES_128/AES_256的会话AES密钥长度分别为16/32字节。

  • TLS 1.1 在计算finish报文数据时,进行的是MD5 + SHA1的HASH算法,而在TLS v1.2下,HASH算法变成了单次SHA256。

  • TLS 1.1 处理finish报文时的伪随机算法(PRF)需要将种子数据为分两块,分别用 MD5 / SHA1 取HASH后异或,TLS 1.2 为单次 SHA256。

  • TLS 1.2 的 CertificateVerify / ServerKeyExchange 报文末尾新增2个字节的 Signature Hash Algorithm,表示 hash_alg 和 sign_alg。

目前业界推荐使用TLS v1.2, TLS v1.1不建议使用。

流程图

以下为 TLS 完整握手流程图

* =======================FULL HANDSHAKE======================
 * Client                        Server
 *
 * ClientHello         -------->
 *                         ServerHello
 *                         Certificate
 *                     CertificateRequest
 *               <--------   ServerHelloDone
 * Certificate
 * ClientKeyExchange
 * CertificateVerify
 * Finished           -------->
 *                     change_cipher_spec
 *               <--------       Finished
 * Application Data       <------->   Application Data

流程详解

客户端发起握手请求

TLS握手始于客户端发起 ClientHello 请求。

struct {
  uint32 gmt_unix_time; // UNIX 32-bit format, UTC时间
  opaque random_bytes[28]; // 28位长度随机数
} Random; //随机数

struct {
  ProtocolVersion client_version; // 支持的最高版本的TLS版本
  Random random; // 上述随机数
  SessionID session_id; // 会话ID,新会话为空
  CipherSuite cipher_suites<2..2^16-2>; // 客户端支持的所有加密套件,上述四种
  CompressionMethod compression_methods<1..2^8-1>; // 压缩算法
  select (extensions_present) { // 额外插件,为空
    case false:
      struct {};
    case true:
      Extension extensions<0..2^16-1>;
  };
} ClientHello; // 客户端发送支持的TLS版本、客户端随机数、支持的加密套件等信息

服务器端回应客户端握手请求

服务器端收到 ClientHello 后,如果支持客户端的TLS版本和算法要求,则返回 ServerHello, Certificate, CertificateRequest, ServerHelloDone 报文

struct {
  ProtocolVersion server_version; // 服务端最后决定使用的TLS版本
  Random random; // 与客户端随机数算法相同,但是必须是独立生成,与客户端毫无关联
  SessionID session_id; // 确定的会话ID
  CipherSuite cipher_suite; // 最终决定的加密套件
  CompressionMethod compression_method; // 最终使用的压缩算法
  select (extensions_present) { // 额外插件,为空
    case false:
      struct {};
    case true:
      Extension extensions<0..2^16-1>;
  };
} ServerHello; // 服务器端返回最终决定的TLS版本,算法,会话ID和服务器随机数等信息

struct {
  ASN.1Cert certificate_list<0..2^24-1>; // 服务器证书信息
} Certificate; // 向客户端发送服务器证书

struct {
  ClientCertificateType certificate_types<1..2^8-1>; // 证书类型,本次握手为 值固定为rsa_sign 
  SignatureAndHashAlgorithm supported_signature_algorithms<2^16-1>; // 支持的HASH 签名算法
  DistinguishedName certificate_authorities<0..2^16-1>; // 服务器能认可的CA证书的Subject列表
} CertificateRequest; // 本次握手为双向认证,此报文表示请求客户端发送客户端证书

struct {

} ServerHelloDone // 标记服务器数据末尾,无内容

客户端收到服务器后响应

客户端应校验服务器端证书,通常用当用本地存储的可信任CA证书校验,如果校验通过,客户端将返回 Certificate, ClientKeyExchange, CertificateVerify, change_cipher_spec, Finished 报文。

CertificateVerify 报文中的签名为 Ukey硬件签名 , 此外客户端证书也是从Ukey读取。

struct {
  ASN.1Cert certificate_list<0..2^24-1>; // 服务器证书信息
} Certificate; // 向服务器端发送客户端证书

struct {
  select (KeyExchangeAlgorithm) {
    case rsa:
      EncryptedPreMasterSecret; // 服务器采用RSA算法,用服务器端证书的公钥,加密客户端生成的46字节随机数(premaster secret)
    case dhe_dss:
    case dhe_rsa:
    case dh_dss:
    case dh_rsa:
    case dh_anon:
      ClientDiffieHellmanPublic;
  } exchange_keys;
} ClientKeyExchange; // 用于返回加密的客户端生成的随机密钥(premaster secret)

struct {
  digitally-signed struct {
    opaque handshake_messages[handshake_messages_length]; // 采用客户端RSA私钥,对之前所有的握手报文数据,HASH后进行RSA签名
  }
} CertificateVerify; // 用于服务器端校验客户端对客户端证书的所有权

struct {
  enum { change_cipher_spec(1), (255) } type; // 固定值0x01
} ChangeCipherSpec; // 通知服务器后续报文为密文

struct {
  opaque verify_data[verify_data_length]; // 校验密文,算法PRF(master_secret, 'client finished', Hash(handshake_messages))
} Finished; // 密文信息,计算之前所有收到和发送的信息(handshake_messages)的摘要,加上`client finished`, 执行PRF算法

Finished 报文生成过程中,将产生会话密钥 master secret,然后生成Finish报文内容。

master_secret = PRF(pre_master_secret, "master secret", ClientHello.random + ServerHello.random)
verify_data = PRF(master_secret, 'client finished', Hash(handshake_messages))

PRF为TLS v1.2规定的伪随机算法, 此例子中,HMAC算法为 SHA256

PRF(secret, label, seed) = P_<hash>(secret, label + seed)

P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
            HMAC_hash(secret, A(2) + seed) +
            HMAC_hash(secret, A(3) + seed) + ...
// A(0) = seed
// A(i) = HMAC_hash(secret, A(i-1))

服务器完成握手

服务收到请求后,首先校验客户端证书的合法性,并且验证客户端证书签名是否合法。根据服务器端证书私钥,解密 ClientKeyExchange,获得pre_master_secret, 用相同的PRF算法即可获取会话密钥,校验客户端 Finish 信息是否正确。如果正确,则服务器端与客户端完成密钥交换。 返回 change_cipher_spec, Finished 报文。

struct {
  enum { change_cipher_spec(1), (255) } type; // 固定值0x01
} ChangeCipherSpec; // 通知服务器后续报文为密文

struct {
  opaque verify_data[verify_data_length]; // 校验密文,算法PRF(master_secret, 'server finished', Hash(handshake_messages))
} Finished; // 密文信息,计算之前所有收到和发送的信息(handshake_messages)的摘要,加上`server finished`, 执行PRF算法

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI