ARIMA模型
ARIMA模型的全称是自回归移动平均模型,是用来预测时间序列的一种常用的统计模型,一般记作ARIMA(p,d,q)。
ARIMA的适应情况
ARIMA模型相对来说比较简单易用。在应用ARIMA模型时,要保证以下几点:
判断时序数据稳定
基本判断方法:稳定的数据,总体上是没有上升和下降的趋势的,是没有周期性的,方差趋向于一个稳定的值。
ARIMA数学表达
ARIMA(p,d,q),其中p是数据本身的滞后数,是AR模型即自回归模型中的参数。d是时间序列数据需要几次差分才能得到稳定的数据。q是预测误差的滞后数,是MA模型即滑动平均模型中的参数。
a) p参数与AR模型
AR模型描述的是当前值与历史值之间的关系,滞后p阶的AR模型可以表示为:
其中u是常数,et代表误差。
b) q参数与MA模型
MA模型描述的是当前值与自回归部分的误差累计的关系,滞后q阶的MA模型可以表示为:
其中u是常数,et代表误差。
c) d参数与差分
一阶差分:
二阶差分:
d) ARIMA = AR+MA
ARIMA模型使用步骤
Python调用ARIMA
#差分处理 diff_series = diff_series.diff(1)#一阶 diff_series2 = diff_series.diff(1)#二阶 #ACF与PACF #从scipy导入包 from scipy import stats import statsmodels.api as sm #画出acf和pacf sm.graphics.tsa.plot_acf(diff_series) sm.graphics.tsa.plot_pacf(diff_series) #arima模型 from statsmodels.tsa.arima_model import ARIMA model = ARIMA(train_data,order=(p,d,q),freq='')#freq是频率,根据数据填写 arima = model.fit()#训练 print(arima) pred = arima.predict(start='',end='')#预测
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对亿速云的支持。如果你想了解更多相关内容请查看下面相关链接
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。