温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么在Python 中使用SQLAlchemy操作数据库

发布时间:2021-05-07 17:01:40 来源:亿速云 阅读:216 作者:Leah 栏目:开发技术

这篇文章给大家介绍怎么在Python 中使用SQLAlchemy操作数据库,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。

python的数据类型有哪些?

python的数据类型:1. 数字类型,包括int(整型)、long(长整型)和float(浮点型)。2.字符串,分别是str类型和unicode类型。3.布尔型,Python布尔类型也是用于逻辑运算,有两个值:True(真)和False(假)。4.列表,列表是Python中使用最频繁的数据类型,集合中可以放任何数据类型。5. 元组,元组用”()”标识,内部元素用逗号隔开。6. 字典,字典是一种键值对的集合。7. 集合,集合是一个无序的、不重复的数据组合。

SQLAlchemy 简介

SQLAlchemy 是一个功能强大的开源 Python ORM 工具包。它提供了 “一个知名企业级的持久化模式的,专为高效率和高性能的数据库访问设计的,改编成一个简单的 Python 域语言的完整套件”。它采用了数据映射模式(像 Java 中的 Hibernate)而不是 Active Record 模式(像Ruby on Rails 的 ORM)。

SQLAlchemy官网。

SQLAlchemy 的优缺点:

优点:

  • 企业级 API,使得代码有健壮性和适应性。

  • 灵活的设计,使得能轻松完成复杂的数据查询。

缺点:

  • 工作单元概念不常见。

  • 重量级 API,导致长学习曲线。

SQLAlchemy 应用

以下是一段使用 SQLAlchemy 操作 SQLite 数据库的代码

# -*- coding:utf-8 -*-

from sqlalchemy import (
  create_engine,
  Column,
  Integer,
  String,
)

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///./sqlalchemy.sqlite', echo=True)

Base = declarative_base()

class User(Base):
  __tablename__ = 'users'

  id = Column(Integer, primary_key=True, autoincrement=True)
  name = Column(String)
  fullname = Column(String)
  nickname = Column(String)

  def __repr__(self):
    return "<User(name='%s', fullname='%s', nickname='%s')>" % (self.name, self.fullname, self.nickname)


db_session = sessionmaker(bind=engine)
session = db_session()

Base.metadata.create_all(engine)

user1 = User(name='ed', fullname='Ed Jones', nickname='edsnickname')
user2 = User(name='wendy', fullname='Wendy Williams', nickname='windy')
user3 = User(name='mary', fullname='Mary Contrary', nickname='mary')

session.add(user1)
session.add(user2)
session.add(user3)
session.commit()

user = session.query(User).filter(User.id<2).all()
print(user)
user = session.query(User).filter(User.id<=5).all()
print(user)

user1.name = 'admin'
session.merge(user1)
user4 = User(name='fred', fullname='Fred Flintstone', nickname='freddy')
session.merge(user4)
session.query(User).filter(User.id==2).update({'name':'test'})
user = session.query(User).filter(User.id<=5).all()
print(user)

在以上代码中我们完成了一下工作:

  1. 连接到数据库「本次我们使用的是 SQLite 数据库」。

  2. 创建数据库表并将其映射到 Python 类上。

  3. 创建数据实例,并将其保存到数据库中。

  4. 对保存在数据库中的数据进行读取和修改。

导入 SQLAlchemy 模块并连接到 SQLite 数据库

SQLAlchemy 通过 create_engine 函数来创建数据库连接。create_engine 函数的第一个参数是数据了 URL,第二个参数 echo 设置为 True 表示在程序的运行过程中我们可以在控制台看到操作所涉及到的 SQL 语句。

在本次示例中我们使用的数据库是 SQLite,你也可以使用其他数据库。只有在调试状态下将 echo 设置为 True,在生产环境请将 echo 设置为 false 或省略 echo 参数。

engine = create_engine('sqlite:///./sqlalchemy.sqlite', echo=True)

create_engine 返回的是一个 Engine 实例,它指向数据库的一些核心接口。SQLAlchemy会根据你选择的数据库配置而调用对应的 DB-API。

create_engine 函数并会不真正建立数据库的 DB-API 连接,当调用 Engine.execute() 或 Engine.connect() 方法时才会建立连接。大多数情况下我们无需关注 Engine,SQLAlchemy 会帮我们处理。

创建数据库表

将 python 类映射到数据库表上,这个 Python 类需要时一个指定基类的子类,这个基类应当含有ORM映射中相关的类和表的信息。这个基类可以通过 declarative_base 方法来创建。
Base = declarative_base()

在这个示例中使用 Base 基类创建了一个 User 的类来作为数据库表。

class User(Base):
  __tablename__ = 'users'

  id = Column(Integer, primary_key=True, autoincrement=True)
  name = Column(String)
  fullname = Column(String)
  nickname = Column(String)

  def __repr__(self):
    return "<User(name='%s', fullname='%s', nickname='%s')>" % (self.name, self.fullname, self.nickname)

在 User 类中我们定义了需要映射到数据库表上的属性,主要包括表名称、列的类型和名称等。这个类至少应包含一个名为 tablename 的属性来给出数据库表的名称,及至少一个给出表的主键「primary key」的列。在 User 类中我们定义了表名称为 users,定义了 id、name、fullname、nickname 四列数据,并设置 id 为表的主键。
创建完成 User 类后,实际在 SQLite 数据库中并不存在该表,此时需要使用 declarative 基类的 Metadata.create_all 在数据库中创建 users 表,在 create_all 方法中我们需要传入参数 Engine。

通过 Metadata.create_all 传入的 Engine 参数,SQLAlchemy 自动实现对数据库的连接。

Base.metadata.create_all(engine)

metadata.create_all 方法执行完成后在 SQLite 数据库即可查到名称为 users 的数据表。

保存数据实例到数据库中

将数据保存到数据库中,我们需要 User 的实例和用于操作数据的 session。

session 是 ORM 数据的接口,可以通过 session 来操作数据库中的数据。

使用已经定义完成的 User 类将数据实例化。

user1 = User(name='ed', fullname='Ed Jones', nickname='edsnickname')
user2 = User(name='wendy', fullname='Wendy Williams', nickname='windy')
user3 = User(name='mary', fullname='Mary Contrary', nickname='mary')

获取 session 首先需要使用 sessionmaker 来得到 session 的工厂类,然后通过工厂类来获取 session。

db_session = sessionmaker(bind=engine)
session = db_session()

session 通过 Engine 与数据库进行关联。session 创建完成后并不会立即打开与数据库的连接,只有当我们第一使用 session 是,才会从 Engine 维护的连接池中取出一个连接来操作数据库,这个连接在我们关闭 session 时会被释放。
获取 session 后可以通过 add 和 commit 方法将数据保存到数据库中。

session.add(user1)
session.add(user2)
session.add(user3)
session.commit()

对数据库中的数据进行查询和修改

SQLAlchemy 通过 query 来对数据进行查询,可以通过 filter 方法对查询结果进行筛选。

user = session.query(User).filter(User.id<2).all()
print(user)
user = session.query(User).filter(User.id<=5).all()
print(user)

以上代码通过 query 获取数据库中所有 User 数据,然后通过 filter 方法筛选出 id 小于 2 和 id 小于等于 5 的数据。

数据库的修改可以通过 merge 和 update 来实现

user1.name = 'admin'
session.merge(user1)
user4 = User(name='fred', fullname='Fred Flintstone', nickname='freddy')
session.merge(user4)
session.query(User).filter(User.id==2).update({'name':'test'})
user = session.query(User).filter(User.id<=5).all()
print(user)

使用 merge 修改数据,当数据中存在该数据时修改,不存在是将当前数据插入数据库中。

代码运行结果

以上示例代码的运行结果如下

2019-02-16 21:45:23,919 INFO sqlalchemy.engine.base.Engine SELECT CAST('test plain returns' AS VARCHAR(60)) AS anon_1
2019-02-16 21:45:23,919 INFO sqlalchemy.engine.base.Engine ()
2019-02-16 21:45:23,919 INFO sqlalchemy.engine.base.Engine SELECT CAST('test unicode returns' AS VARCHAR(60)) AS anon_1
2019-02-16 21:45:23,919 INFO sqlalchemy.engine.base.Engine ()
2019-02-16 21:45:23,920 INFO sqlalchemy.engine.base.Engine PRAGMA table_info("users")
2019-02-16 21:45:23,920 INFO sqlalchemy.engine.base.Engine ()
2019-02-16 21:45:23,921 INFO sqlalchemy.engine.base.Engine
CREATE TABLE users (
  id INTEGER NOT NULL,
  name VARCHAR,
  fullname VARCHAR,
  nickname VARCHAR,
  PRIMARY KEY (id)
)


2019-02-16 21:45:23,921 INFO sqlalchemy.engine.base.Engine ()
2019-02-16 21:45:23,922 INFO sqlalchemy.engine.base.Engine COMMIT
2019-02-16 21:45:23,924 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2019-02-16 21:45:23,925 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
2019-02-16 21:45:23,925 INFO sqlalchemy.engine.base.Engine ('ed', 'Ed Jones', 'edsnickname')
2019-02-16 21:45:23,926 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
2019-02-16 21:45:23,926 INFO sqlalchemy.engine.base.Engine ('wendy', 'Wendy Williams', 'windy')
2019-02-16 21:45:23,926 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
2019-02-16 21:45:23,926 INFO sqlalchemy.engine.base.Engine ('mary', 'Mary Contrary', 'mary')
2019-02-16 21:45:23,927 INFO sqlalchemy.engine.base.Engine COMMIT
2019-02-16 21:45:23,929 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2019-02-16 21:45:23,929 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname
FROM users
WHERE users.id < ?
2019-02-16 21:45:23,929 INFO sqlalchemy.engine.base.Engine (2,)
[<User(name='ed', fullname='Ed Jones', nickname='edsnickname')>]
2019-02-16 21:45:23,931 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname
FROM users
WHERE users.id <= ?
2019-02-16 21:45:23,931 INFO sqlalchemy.engine.base.Engine (5,)
[<User(name='ed', fullname='Ed Jones', nickname='edsnickname')>, <User(name='wendy', fullname='Wendy Williams', nickname='windy')>, <User(name='mary', fullname='Mary Contrary', nickname='mary')>]
2019-02-16 21:45:23,932 INFO sqlalchemy.engine.base.Engine UPDATE users SET name=? WHERE users.id = ?
2019-02-16 21:45:23,932 INFO sqlalchemy.engine.base.Engine ('admin', 1)
2019-02-16 21:45:23,933 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
2019-02-16 21:45:23,933 INFO sqlalchemy.engine.base.Engine ('fred', 'Fred Flintstone', 'freddy')
2019-02-16 21:45:23,934 INFO sqlalchemy.engine.base.Engine UPDATE users SET name=? WHERE users.id = ?
2019-02-16 21:45:23,934 INFO sqlalchemy.engine.base.Engine ('test', 2)
2019-02-16 21:45:23,935 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname
FROM users
WHERE users.id <= ?
2019-02-16 21:45:23,935 INFO sqlalchemy.engine.base.Engine (5,)
[<User(name='admin', fullname='Ed Jones', nickname='edsnickname')>, <User(name='test', fullname='Wendy Williams', nickname='windy')>, <User(name='mary', fullname='Mary Contrary', nickname='mary')>, <User(name='fred', fullname='Fred Flintstone', nickname='freddy')>]

由于我们设置 create_engine 中 echo 为 True,因此在执行结果中包含了 SQLAlchemy 打印的 SQL 语句,我们可以取消 crete_engine 中的 echo

engine = create_engine('sqlite:///./sqlalchemy.sqlite')

此时的执行结果如下:

[<User(name='ed', fullname='Ed Jones', nickname='edsnickname')>]
[<User(name='ed', fullname='Ed Jones', nickname='edsnickname')>, <User(name='wendy', fullname='Wendy Williams', nickname='windy')>, <User(name='mary', fullname='Mary Contrary', nickname='mary')>]
[<User(name='admin', fullname='Ed Jones', nickname='edsnickname')>, <User(name='test', fullname='Wendy Williams', nickname='windy')>, <User(name='mary', fullname='Mary Contrary', nickname='mary')>, <User(name='fred', fullname='Fred Flintstone', nickname='freddy')>]

关于怎么在Python 中使用SQLAlchemy操作数据库就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI