最小二乘法矩阵
#! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np def calc_left_k_mat(k): """ 获得左侧k矩阵 :param k: :return: """ k_mat = [] for i in range(k + 1): now_line = [] for j in range(k + 1): now_line.append(j + i) k_mat.append(now_line) return k_mat def calc_right_k_mat(k): """ 计算右侧矩阵 :param k: :return: """ k_mat = [] for i in range(k + 1): k_mat.append([i, i + 1]) return k_mat def pow_k(x, k): """ 计算x列表中的k次方和 :param x: 点集合的x坐标 :param k: k值 :return: """ sum = 0 for i in x: sum += i ** k return sum def get_left_mat_with_x(k_mat, k): """ 将 左侧k矩阵运算得到左侧新的矩阵 :param k_mat: :param k: :return: """ left_mat = [] for kl in k_mat: now_data = [] for k in kl: now_data.append(pow_k(x, k)) left_mat.append(now_data) return left_mat def get_right_mat_with(right_k_mat): """ 将 右侧k矩阵运算得到右侧新的矩阵 :param right_k_mat: :return: """ right_mat = [] for i in range(len(right_k_mat)): sum = 0 for xL, yL in zip(x, y): a = (xL ** right_k_mat[i][0]) * (yL ** right_k_mat[i][1]) sum += a right_mat.append(sum) return right_mat def fuse_mat(left, right): """ 融合两个矩阵 :param left: :param right: :return: """ new_mat = [] for i in range(len(left)): asd = np.append(left[i], right[i]) new_mat.append(list(asd)) return new_mat if __name__ == '__main__': k = 3 x = [1, 2, 3] y = [1, 2, 3] # 计算原始左侧K矩阵 left_k_mat = calc_left_k_mat(k) print("原始左侧K矩阵") print(left_k_mat) # 计算原始右侧K矩阵 right_k_mat = calc_right_k_mat(k) print("原始右侧k矩阵") print(right_k_mat) # 计算左侧 k 矩阵 new_left_mat = get_left_mat_with_x(k_mat=left_k_mat, k=k) # 计算右侧 k 矩阵 new_right_mat = get_right_mat_with(right_k_mat=right_k_mat) print("计算后左侧K矩阵") print(new_left_mat) print("计算后右侧侧K矩阵") print(new_right_mat) print("-----" * 10) # 融合两个矩阵 左侧 矩阵每一行增加 右侧矩阵的对应行 new_all = fuse_mat(new_left_mat, new_right_mat) print("完整矩阵") print(new_all)
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对亿速云的支持。如果你想了解更多相关内容请查看下面相关链接
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。