温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python如何实现消费kafka数据批量插入到es

发布时间:2021-08-05 15:13:40 来源:亿速云 阅读:290 作者:小新 栏目:开发技术

这篇文章将为大家详细讲解有关python如何实现消费kafka数据批量插入到es,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

1、es的批量插入

这是为了方便后期配置的更改,把配置信息放在logging.conf中

用elasticsearch来实现批量操作,先安装依赖包,sudo pip install Elasticsearch3

from elasticsearch import Elasticsearch 
class ImportEsData:

  logging.config.fileConfig("logging.conf")
  logger = logging.getLogger("msg")

  def __init__(self,hosts,index,type):
    self.es = Elasticsearch(hosts=hosts.strip(',').split(','), timeout=5000)
    self.index = index
    self.type = type


  def set_date(self,data): 
    # 批量处理 
    # es.index(index="test-index",doc_type="test-type",id=42,body={"any":"data","timestamp":datetime.now()})
    self.es.index(index=self.index,doc_type=self.index,body=data)

2、使用pykafka消费kafka

1.因为kafka是0.8,pykafka不支持zk,只能用get_simple_consumer来实现

2.为了实现多个应用同时消费而且不重消费,所以一个应用消费一个partition

3. 为是确保消费数据量在不满足10000这个批量值,能在一个时间范围内插入到es中,这里设置consumer_timeout_ms一个超时等待时间,退出等待消费阻塞。

4.退出等待消费阻塞后导致无法再消费数据,因此在获取self.consumer 的外层加入了while True 一个死循环

#!/usr/bin/python
# -*- coding: UTF-8 -*-
from pykafka import KafkaClient
import logging
import logging.config
from ConfigUtil import ConfigUtil
import datetime


class KafkaPython:
  logging.config.fileConfig("logging.conf")
  logger = logging.getLogger("msg")
  logger_data = logging.getLogger("data")

  def __init__(self):
    self.server = ConfigUtil().get("kafka","kafka_server")
    self.topic = ConfigUtil().get("kafka","topic")
    self.group = ConfigUtil().get("kafka","group")
    self.partition_id = int(ConfigUtil().get("kafka","partition"))
    self.consumer_timeout_ms = int(ConfigUtil().get("kafka","consumer_timeout_ms"))
    self.consumer = None
    self.hosts = ConfigUtil().get("es","hosts")
    self.index_name = ConfigUtil().get("es","index_name")
    self.type_name = ConfigUtil().get("es","type_name")


  def getConnect(self):
    client = KafkaClient(self.server)
    topic = client.topics[self.topic]
    p = topic.partitions
    ps={p.get(self.partition_id)}

    self.consumer = topic.get_simple_consumer(
      consumer_group=self.group,
      auto_commit_enable=True,
      consumer_timeout_ms=self.consumer_timeout_ms,
      # num_consumer_fetchers=1,
      # consumer_id='test1',
      partitions=ps
      )
    self.starttime = datetime.datetime.now()


  def beginConsumer(self):
    print("beginConsumer kafka-python")
    imprtEsData = ImportEsData(self.hosts,self.index_name,self.type_name)
    #创建ACTIONS 
    count = 0
    ACTIONS = [] 

    while True:
      endtime = datetime.datetime.now()
      print (endtime - self.starttime).seconds
      for message in self.consumer:
        if message is not None:
          try:
            count = count + 1
            # print(str(message.partition.id)+","+str(message.offset)+","+str(count))
            # self.logger.info(str(message.partition.id)+","+str(message.offset)+","+str(count))
            action = { 
              "_index": self.index_name, 
              "_type": self.type_name, 
              "_source": message.value
            }
            ACTIONS.append(action)
            if len(ACTIONS) >= 10000:
              imprtEsData.set_date(ACTIONS)
              ACTIONS = []
              self.consumer.commit_offsets()
              endtime = datetime.datetime.now()
              print (endtime - self.starttime).seconds
              #break
          except (Exception) as e:
            # self.consumer.commit_offsets()
            print(e)
            self.logger.error(e)
            self.logger.error(str(message.partition.id)+","+str(message.offset)+","+message.value+"\n")
            # self.logger_data.error(message.value+"\n")
          # self.consumer.commit_offsets()


      if len(ACTIONS) > 0:
        self.logger.info("等待时间超过,consumer_timeout_ms,把集合数据插入es")
        imprtEsData.set_date(ACTIONS)
        ACTIONS = []
        self.consumer.commit_offsets()




  def disConnect(self):
    self.consumer.close()


from elasticsearch import Elasticsearch 
from elasticsearch.helpers import bulk
class ImportEsData:

  logging.config.fileConfig("logging.conf")
  logger = logging.getLogger("msg")

  def __init__(self,hosts,index,type):
    self.es = Elasticsearch(hosts=hosts.strip(',').split(','), timeout=5000)
    self.index = index
    self.type = type


  def set_date(self,data): 
    # 批量处理 
    success = bulk(self.es, data, index=self.index, raise_on_error=True) 
    self.logger.info(success)

3、运行

if __name__ == '__main__':
  kp = KafkaPython()
  kp.getConnect()
  kp.beginConsumer()
  # kp.disConnect()

注:简单的写了一个从kafka中读取数据到一个list里,当数据达到一个阈值时,在批量插入到 es的插件

现在还在批量的压测中。。。

关于“python如何实现消费kafka数据批量插入到es”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI