温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

pandas如何快速处理date_time日期格式

发布时间:2021-08-18 14:13:47 来源:亿速云 阅读:142 作者:小新 栏目:开发技术

这篇文章主要为大家展示了“pandas如何快速处理date_time日期格式”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pandas如何快速处理date_time日期格式”这篇文章吧。

当数据很多,且日期格式不标准时的时候,如果pandas.to_datetime 函数使用不当,会使得处理时间变得很长,提升速度的关键在于format的使用。下面举例进行说明:

示例数据:

date 格式:02.01.2013 即 日.月.年

数据量:3000000

transcation.head()
---------------------------------------------
   date date_block_num shop_id item_id item_price item_cnt_day
0 02.01.2013    0  59 22154  999.00   1.0
1 03.01.2013    0  25  2552  899.00   1.0
2 05.01.2013    0  25  2552  899.00   -1.0
3 06.01.2013    0  25  2554  1709.05   1.0
4 15.01.2013    0  25  2555  1099.00   1.0

处理方式一:

transactions['date_formatted']=pd.to_datetime(transactions['date'])

处理时间: 10min

处理方式二:

transactions['date_formatted']=pd.to_datetime(transactions['date'], format='%d.%m.%Y')

处理时间:10s

附录:format相关

代码说明
%Y4位数的年
%y2位数的年
%m2位数的月[01,12]
%d2位数的日[01,31]
%H时(24小时制)[00,23]
%l时(12小时制)[01,12]
%M2位数的分[00,59]
%S秒[00,61]有闰秒的存在
%w用整数表示的星期几[0(星期天),6]
%F%Y-%m-%d简写形式例如,2017-06-27
%D%m/%d/%y简写形式

以上是“pandas如何快速处理date_time日期格式”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI