本篇文章为大家展示了怎么在Python中利用pandas处理CSV文件,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
Pandas读取本地CSV文件并设置Dataframe(数据格式)
import pandas as pd import numpy as np df=pd.read_csv('filename',header=None,sep=' ') #filename可以直接从盘符开始,标明每一级的文件夹直到csv文件,header=None表示头部为空,sep=' '表示数据间使用空格作为分隔符,如果分隔符是逗号,只需换成 ‘,'即可。 print df.head() print df.tail() #作为示例,输出CSV文件的前5行和最后5行,这是pandas默认的输出5行,可以根据需要自己设定输出几行的值
数据读取示例
图片中显示了我本地数据的前5行与最后5行,最前面一列没有标号的是行号,数据一共有13列,标号从0到12,一行显示不完全,在第9列以后换了行,并且用反斜杠“\”标注了出来。
2017年4月28日更新
使用pandas直接读取本地的csv文件后,csv文件的列索引默认为从0开始的数字,重定义列索引的语句如下:
import pandas as pd import numpy as np df=pd.read_csv('filename',header=None,sep=' ',names=["week",'month','date','time','year','name1','freq1','name2','freq2','name3','data1','name4','data2']) print df
此时打印出的文件信息如下,列索引已经被重命名:
上述内容就是怎么在Python中利用pandas处理CSV文件,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。